Publication

Robust Biophysical Parameter Estimation with a Neural Network Enhanced Hamiltonian Markov Chain Monte Carlo Sampler

Résumé

Probabilistic parameter estimation in model fitting runs the gamut from maximum likelihood or maximum a posteriori point estimates from optimization to Markov Chain Monte Carlo (MCMC) sampling. The latter, while more computationally intensive, generally provides a better characterization of the underlying parameter distribution than that of point estimates. However, in order to efficiently explore distributions, MCMC methods ideally require generating uncorrelated samples while also preserving reasonable acceptance probabilities; this becomes particularly important in problematic regions of parameter space. In this paper, we extend a recently proposed Hamiltonian MCMC sampler parametrized by neural networks (L2HMC) by modifying the loss function to jointly optimize the distance between samples and the acceptance probability such that it is stable and efficient. We apply this enhanced sampler to parameter estimation in a recently proposed MRI model, the multi-echo spherical mean technique. We show that it generally outperforms the state of the art Hamiltonian No-U-Turn (NUTS) sampler, L2HMC, and a least squares fitting in terms of accuracy and precision, also enabling the generation of more informative parameter posterior distributions. This illustrates the potential of machine learning enhanced samplers for improving probabilistic parameter estimation for medical imaging applications.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Point estimation
In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Maximum de vraisemblance
En statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Théorie de l'estimation
En statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Afficher plus
Publications associées (72)

Regularization for distributionally robust state estimation and prediction

Jean-Sébastien Hubert Brouillon

Simulation script for the paper "Regularization for distributionally robust state estimation and prediction". Run tests/test_cdc.py to reproduce results. Extended versions can be found at https://github.com/DecodEPFL/. ...
EPFL Infoscience2023

A Modular Workflow for Model Building, Analysis, and Parameter Estimation in Systems Biology and Neuroscience

Daniel Keller, Andrii Stepaniuk

Neuroscience incorporates knowledge from a range of scales, from single molecules to brain wide neural networks. Modeling is a valuable tool in understanding processes at a single scale or the interactions between two adjacent scales and researchers use a ...
HUMANA PRESS INC2021

Bayesian Methods for the Identification of Distribution Networks

The increasing integration of intermittent renewable generation, especially at the distribution level, necessitates advanced planning and optimisation methodologies contingent on the knowledge of the admittance matrix, capturing the topology and line param ...
IEEE2021
Afficher plus
MOOCs associés (10)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.