In statistics, a parametric model or parametric family or finite-dimensional model is a particular class of statistical models. Specifically, a parametric model is a family of probability distributions that has a finite number of parameters. A statistical model is a collection of probability distributions on some sample space. We assume that the collection, P, is indexed by some set Θ. The set Θ is called the parameter set or, more commonly, the parameter space. For each θ ∈ Θ, let Fθ denote the corresponding member of the collection; so Fθ is a cumulative distribution function. Then a statistical model can be written as The model is a parametric model if Θ ⊆ Rk for some positive integer k. When the model consists of absolutely continuous distributions, it is often specified in terms of corresponding probability density functions: The Poisson family of distributions is parametrized by a single number λ > 0: where pλ is the probability mass function. This family is an exponential family. The normal family is parametrized by θ = (μ, σ), where μ ∈ R is a location parameter and σ > 0 is a scale parameter: This parametrized family is both an exponential family and a location-scale family. The Weibull translation model has a three-dimensional parameter θ = (λ, β, μ): The binomial model is parametrized by θ = (n, p), where n is a non-negative integer and p is a probability (i.e. p ≥ 0 and p ≤ 1): This example illustrates the definition for a model with some discrete parameters. A parametric model is called identifiable if the mapping θ ↦ Pθ is invertible, i.e. there are no two different parameter values θ1 and θ2 such that Pθ1 = Pθ2. Parametric models are contrasted with the semi-parametric, semi-nonparametric, and non-parametric models, all of which consist of an infinite set of "parameters" for description.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.