Explore la charge cognitive, la métacognition, les environnements d'apprentissage et le raisonnement inductif, avec des exemples de questions d'examen et la ville de Godthåb.
Couvre les progrès dans les prothèses bioniques, en mettant l'accent sur l'intégration de rétroaction sensorielle et les systèmes de contrôle en boucle fermée pour une expérience utilisateur améliorée.
Explore le développement historique de l'apprentissage profond, de l'apprentissage par renforcement, des mécanismes d'attention et des systèmes de mémoire en IA inspirés des neurosciences.
Explore l'intersection entre les neurosciences et l'apprentissage automatique, en discutant de l'apprentissage profond, de l'apprentissage par renforcement, des systèmes de mémoire et de l'avenir du pont entre l'intelligence machine et l'intelligence humaine.
Explore l'utilisation d'interconnexions rapides pour le co-traitement évolutif avec les GPU dans les bases de données, soulignant l'importance de surmonter le goulot d'étranglement du transfert et de réévaluer les hypothèses d'amélioration des performances.