Un problème de dissection consiste, en géométrie, à chercher un découpage d'une figure géométrique, par exemple, un polytope ou une boule, de sorte à pouvoir recoller les morceaux en une autre figure donnée d'aire ou de volume égal - ou plus généralement, de même mesure.
On appelle alors ce découpage une dissection, par exemple d'un polytope en un autre polytope.
En général, on s’intéresse aux dissections ne comportant qu'un nombre fini (voir minimal) de morceaux, et, dans le contexte de cet article, à des morceaux ayant des formes assez régulières (analogues à la forme de départ, par exemple), contrairement aux morceaux utilisés dans le paradoxe de Banach-Tarski.
vignette|upright=1.7|Dissection de Dudeney d'un triangle équilatéral en carré
Il est établi, par le théorème de Wallace-Bolyai-Gerwien, que pour tout couple de polygones de même aire, on peut trouver une dissection (polygonale) du premier en le second. Cependant, la même affirmation est fausse pour les polyèdres en général : il en existe qui ont le même volume sans pour autant qu'on puisse trouver de dissection (polyédrique) de l'un en l'autre (c'est le troisième problème de Hilbert).
On retrouve néanmoins la possibilité de changer n'importe quelle figure en une autre de même volume si les figures qu'on considère ont même invariant de Dehn, par exemple des zonoèdres.
Une dissection en triangles de mêmes aires s'appelle une équidissection. La plupart des polygones n'en possèdent pas, et quand il en existe, elles sont souvent soumises à d'importantes restrictions ; ainsi, le théorème de Monsky affirme qu'il n'existe pas d'équidissection d'un carré en un nombre impair de triangles.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|Illustration de l'invariant de Dehn Le troisième problème de Hilbert est l'un des 23 problèmes de Hilbert. Considéré comme le plus facile, il traite de la géométrie des polyèdres. David Hilbert conjectura que ce n'était pas toujours vrai. Ce fut confirmé dans l'année par son élève, Max Dehn, qui fournit un contre-exemple. Pour le problème analogue concernant les polygones, la réponse est affirmative. Le résultat est connu sous le nom du théorème de Wallace-Bolyai-Gerwien.
In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other. Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal.
Un pavage de l'espace est un ensemble de portions de l'espace euclidien de , par exemple des polyèdres, dont l'union est l'espace tout entier, sans interpénétration. Dans cet emploi le terme pavage est une généralisation à trois dimensions du concept de pavage du plan, lequel dérive directement du sens commun de , le recouvrement d'un sol par des pavés jointifs (des blocs de forme grossièrement cubique) : la surface d'un sol pavé se présente comme un assemblage de carrés jointifs.
We study two decomposition problems in combinatorial geometry. The first part of the thesis deals with the decomposition of multiple coverings of the plane. We say that a planar set is cover-decomposable if there is a constant m such that any m-fold coveri ...