Concept

Troisième problème de Hilbert

vignette|Illustration de l'invariant de Dehn Le troisième problème de Hilbert est l'un des 23 problèmes de Hilbert. Considéré comme le plus facile, il traite de la géométrie des polyèdres. David Hilbert conjectura que ce n'était pas toujours vrai. Ce fut confirmé dans l'année par son élève, Max Dehn, qui fournit un contre-exemple. Pour le problème analogue concernant les polygones, la réponse est affirmative. Le résultat est connu sous le nom du théorème de Wallace-Bolyai-Gerwien. Dehn utilise l'algèbre pour nier la possibilité du découpage. Lorsque le premier polyèdre peut être effectivement découpé en un nombre fini de polyèdres qui se rassemblent pour former le second, les polyèdres sont dits congruents. À chaque polyèdre P, on associe une valeur D(P), appelée « invariant de Dehn », telle que Par conséquent : Or le cube a un invariant de Dehn nul, tandis que le tétraèdre régulier a un invariant de Dehn non nul. Ces deux polyèdres ne sont donc pas congruents. L'invariant se définit sur les longueurs et les angles dièdres. Observons : un découpage par un plan divise les longueurs de certaines arêtes en deux. Il faut donc que l'invariant soit additif en ces longueurs ; de même, si un polyèdre est divisé selon une arête, l'angle dièdre correspondant est coupé en deux. Il faut donc que l'invariant soit additif en ces angles ; enfin, le découpage fait apparaître de nouvelles arêtes ; donc des nouvelles longueurs, et des nouveaux angles dièdres supplémentaires. Ces contributions doivent s'annuler. C'est pour cela que l'on va quotienter par le second membre du produit tensoriel suivant. L'invariant de Dehn se définit comme un élément du produit tensoriel sur de deux -modules : le groupe additif des réels et le quotient . où est la longueur de l'arête , est l'angle dièdre entre les faces adjacentes à , et la somme est prise sur toutes les arêtes du polyèdre. démontra en 1965 que deux polyèdres sont congruents si (et seulement si) ils ont même volume et même invariant de Dehn.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (1)
Programmation linéaire et intégrale
Couvre la théorie de la programmation linéaire et intégrale, en se concentrant sur la coque entière et la polyèdre rationnelle.
Publications associées (7)

Complexity of linear relaxations in integer programming

Matthias Schymura

For a set X of integer points in a polyhedron, the smallest number of facets of any polyhedron whose set of integer points coincides with X is called the relaxation complexity rc(X). This parameter was introduced by Kaibel & Weltge (2015) and captures the ...
2020

On The Convergence Of The Affine Hull Of The Chvatal-Gomory Closures

Yuri Faenza, Marco Di Summa

Given an integral polyhedron P subset of R-n and a rational polyhedron Q subset of R-n containing the same integer points as P, we investigate how many iterations of the Chvatal-Gomory closure operator have to be performed on Q to obtain a polyhedron conta ...
Siam Publications2013

Diameter of Polyhedra: Limits of Abstraction

Friedrich Eisenbrand, Thomas Rothvoss, Nicolai Hähnle

We investigate the diameter of a natural abstraction of the 1-skeleton of polyhedra. Even if this abstraction is more general than other abstractions previously studied in the literature, known upper bounds on the diameter of polyhedra continue to hold her ...
2010
Afficher plus
Concepts associés (9)
Problème de dissection
Un problème de dissection consiste, en géométrie, à chercher un découpage d'une figure géométrique, par exemple, un polytope ou une boule, de sorte à pouvoir recoller les morceaux en une autre figure donnée d'aire ou de volume égal - ou plus généralement, de même mesure. On appelle alors ce découpage une dissection, par exemple d'un polytope en un autre polytope.
Pyramide
En géométrie, une pyramide (du grec ancien ) à n côtés est un polyèdre à n + 1 faces, formé en reliant une base polygonale de n côtés à son sommet ou sommet opposé à la base (également appelé apex), par n faces triangulaires (n ≥ 3). Lorsque cela n'est pas précisé, la base est supposée carrée. Pour une pyramide triangulaire chaque face peut servir de base, avec le sommet opposé pour apex. Le tétraèdre régulier, un des solides de Platon, est une pyramide triangulaire.
Dehn invariant
In geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other. Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.