Concept

Electromagnetic wave equation

Résumé
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form: where is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇2 is the Laplace operator. In a vacuum, vph = c0 = 299,792,458m/s, a fundamental physical constant. The electromagnetic wave equation derives from Maxwell's equations. In most older literature, B is called the magnetic flux density or magnetic induction. The following equationspredicate that any electromagnetic wave must be a transverse wave, where the electric field E and the magnetic field B are both perpendicular to the direction of wave propagation. In his 1865 paper titled A Dynamical Theory of the Electromagnetic Field, James Clerk Maxwell utilized the correction to Ampère's circuital law that he had made in part III of his 1861 paper On Physical Lines of Force. In Part VI of his 1864 paper titled Electromagnetic Theory of Light, Maxwell combined displacement current with some of the other equations of electromagnetism and he obtained a wave equation with a speed equal to the speed of light. He commented: The agreement of the results seems to show that light and magnetism are affections of the same substance, and that light is an electromagnetic disturbance propagated through the field according to electromagnetic laws. Maxwell's derivation of the electromagnetic wave equation has been replaced in modern physics education by a much less cumbersome method involving combining the corrected version of Ampère's circuital law with Faraday's law of induction. To obtain the electromagnetic wave equation in a vacuum using the modern method, we begin with the modern 'Heaviside' form of Maxwell's equations.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.