In mathematics, the Helmholtz equation is the eigenvalue problem for the Laplace operator. It corresponds to the linear partial differential equation where ∇2 is the Laplace operator, k2 is the eigenvalue, and f is the (eigen)function. When the equation is applied to waves, k is known as the wave number. The Helmholtz equation has a variety of applications in physics, including the wave equation and the diffusion equation, and it has uses in other sciences. The Helmholtz equation often arises in the study of physical problems involving partial differential equations (PDEs) in both space and time. The Helmholtz equation, which represents a time-independent form of the wave equation, results from applying the technique of separation of variables to reduce the complexity of the analysis. For example, consider the wave equation Separation of variables begins by assuming that the wave function u(r, t) is in fact separable: Substituting this form into the wave equation and then simplifying, we obtain the following equation: Notice that the expression on the left side depends only on r, whereas the right expression depends only on t. As a result, this equation is valid in the general case if and only if both sides of the equation are equal to the same constant value. This argument is key in the technique of solving linear partial differential equations by separation of variables. From this observation, we obtain two equations, one for A(r), the other for T(t): where we have chosen, without loss of generality, the expression −k2 for the value of the constant. (It is equally valid to use any constant k as the separation constant; −k2 is chosen only for convenience in the resulting solutions.) Rearranging the first equation, we obtain the Helmholtz equation: Likewise, after making the substitution ω = kc, where k is the wave number, and ω is the angular frequency (assuming a monochromatic field), the second equation becomes We now have Helmholtz's equation for the spatial variable r and a second-order ordinary differential equation in time.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
ME-273: Introduction to control of dynamical systems
Cours introductif à la commande des systèmes dynamiques. On part de quatre exemples concrets et on introduit au fur et à mesure un haut niveau d'abstraction permettant de résoudre de manière unifiée l
CH-250: Mathematical methods in chemistry
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
PHYS-216: Mathematical methods (for SPH)
Ce cours est un complément aux cours d'analyse et d'algèbre linéaire qui apporte des méthodes et des techniques mathématiques supplémentaires requises pour les cours de physique de 3e année, notamment
Afficher plus
Séances de cours associées (85)
Équations de chaleur et transformée de Fourier
Couvre les équations de chaleur, les transformées de Fourier et les méthodes de séparation variables.
Physique avancée I
Couvre des sujets avancés en physique, notamment les forces empiriques, les applications des lois de Newton, l'élan, l'impulsion, le travail, l'énergie et l'élan angulaire.
Dérivés et lignes tangentes : comprendre les fonctions et les limites
Explore les dérivés, les fonctions, les limites et les lignes tangentes en calcul.
Afficher plus
Publications associées (76)

Shape Holomorphy of Boundary Integral Operators on Multiple Open Arcs

Fernando José Henriquez Barraza

We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
New York2024

Global Regularity For The Nonlinear Wave Equation With Slightly Supercritical Power

Maria Colombo, Silja Noëmi Aline Haffter

We consider the defocusing nonlinear wave equation ❑u D jujp ⠀1u in R3 ⠂ & UOELIG;0; 1/. We prove that for any initial datum with a scaling-subcritical norm bounded by M0 the equation is globally well-posed for p D 5 C i, where i 2 .0; ...
MATHEMATICAL SCIENCE PUBL2023

On a Finite-Size Neuronal Population Equation

Tilo Schwalger, Valentin Marc Schmutz, Eva Löcherbach

Population equations for infinitely large networks of spiking neurons have a long tradition in theoret-ical neuroscience. In this work, we analyze a recent generalization of these equations to populations of finite size, which takes the form of a nonlinear ...
SIAM PUBLICATIONS2023
Afficher plus
Concepts associés (16)
Electromagnetic wave equation
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form: where is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇2 is the Laplace operator.
Plane-wave expansion
In physics, the plane-wave expansion expresses a plane wave as a linear combination of spherical waves: where i is the imaginary unit, k is a wave vector of length k, r is a position vector of length r, jl are spherical Bessel functions, Pl are Legendre polynomials, and the hat ^ denotes the unit vector. In the special case where k is aligned with the z axis, where θ is the spherical polar angle of r. With the spherical-harmonic addition theorem the equation can be rewritten as where Ylm are the spherical harmonics and the superscript * denotes complex conjugation.
Fonction de Green
En mathématiques et en physique, une fonction de Green est une solution (également appelée solution élémentaire ou solution fondamentale) d'une équation différentielle linéaire à coefficients constants, ou d'une équation aux dérivées partielles linéaire à coefficients constants. Ces « fonctions » de Green, qui se trouvent être le plus souvent des distributions, ont été introduites par George Green en 1828 pour les besoins de l'électromagnétisme. Le mémoire de Green restera confidentiel jusqu'à sa republication en trois parties, à partir de 1850.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.