Concept

Impédance caractéristique du vide

Résumé
In electromagnetism, the impedance of free space, Z0, is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is, where is the electric field strength and is the magnetic field strength. Its presently accepted value is Where Ω is the ohm, the SI unit of electrical resistance. The impedance of free space (that is the wave impedance of a plane wave in free space) is equal to the product of the vacuum permeability μ0 and the speed of light in vacuum c0. Before 2019, the values of both these constants were taken to be exact (they were given in the definitions of the ampere and the metre respectively), and the value of the impedance of free space was therefore likewise taken to be exact. However, with the redefinition of the SI base units that came into force on 20 May 2019, the impedance of free space is subject to experimental measurement because only the speed of light in vacuum c0 retains an exactly defined value. The analogous quantity for a plane wave travelling through a dielectric medium is called the intrinsic impedance of the medium, and designated η (eta). Hence Z0 is sometimes referred to as the intrinsic impedance of free space, and given the symbol η0. It has numerous other synonyms, including: wave impedance of free space, the vacuum impedance, intrinsic impedance of vacuum, characteristic impedance of vacuum, wave resistance of free space. From the above definition, and the plane wave solution to Maxwell's equations, where μ0 is the magnetic constant, also known as the permeability of free space ≈ 12.566e-7 Henries/meter, ε0 is the electric constant, also known as the permittivity of free space ≈ 8.854e-12 Farads/meter, c is the speed of light in free space. e is the elementary charge, α is the fine structure constant, and h is Planck's constant. The reciprocal of Z0 is sometimes referred to as the admittance of free space and represented by the symbol Y0.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (28)
Personnes associées (1)
Concepts associés (11)
Electromagnetic wave equation
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form: where is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇2 is the Laplace operator.
Mathematical descriptions of the electromagnetic field
There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking. Classical electromagnetism The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field.
Système d'unités gaussiennes
Le système d'unités gaussiennes constitue un système métrique d'unités physiques. Ce système est le plus couramment utilisé de toute une famille de systèmes d'unités électromagnétiques basés sur des unités cgs (centimètre-gramme-seconde). Il est aussi appelé unités gaussiennes, unités gaussiennes-cgs, ou souvent simplement unités cgs. Ce dernier terme "unités cgs" est cependant ambigu, et doit donc être évité si possible : il existe plusieurs variantes d'unités cgs, avec des définitions contradictoires des quantités et unités électromagnétiques.
Afficher plus
Cours associés (2)
EE-201: Electromagnetics II : field computation
Ce cours traite de l'électromagnétisme dans le vide et dans les milieux continus. A partir des principes fondamentaux de l'électromagnétisme, on établit les méthodes de résolution des équations de Max
EE-624: Advanced electromagnetics
In this advanced electromagnetics course, you will develop a solid theoretical understanding of wave-matter interactions in natural materials and artificially structured photonic media and devices.
Séances de cours associées (8)
Rayonnement du piston: analyse de la direction et de l'impédance
Explore la direction, l'impédance et le comportement de champ proche d'un piston circulaire dans diverses conditions de montage.
Théorie laser: Fondements et applications
Explore les fondamentaux laser, le développement historique et les mécanismes d'atténuation.
Lorenz Modèle: interaction de la lumière avec l'électron lié
Explore la technologie laser, l'équation d'onde de Helmholtz et le modèle d'oscillateur électronique.
Afficher plus