We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue ...
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
A convolution algebra is a topological vector space X that is closed under the convolution operation. It is said to be inverse-closed if each element of X whose spectrum is bounded away from zero has a convolution inverse that is also part of the algebra. ...
Let X be a finite set and let k be a commutative ring. We consider the k-algebra of the monoid of all relations on X, modulo the ideal generated by the relations factorizing through a set of cardinality strictly smaller than Card(X), called inessential rel ...
This thesis is concerned with the algebraic theory of hermitian forms. It is organized in two parts. The first, consisting of the first two chapters, deals with some descent properties of unimodular hermitian forms over central simple algebras with involut ...
We study correlation functions involving generalized ANEC operators of the form integral dx-x-n+2T--x -> in four dimensions. We compute two, three, and ...
We determine the dimension of every simple module for the algebra of the monoid of all relations on a finite set (i.e. Boolean matrices). This is in fact the same question as the determination of the dimension of every evaluation of a simple correspondence ...
We show that if a smooth multiplicative subbundle S subset of T G on a groupoid G P is involutive and satisfies completeness conditions, then its leaf space G/S inherits a groupoid structure over the space of leaves of TP boolean AND S in P. As an applicat ...
We classify all the simple modules for the algebra of relations on a finite set, give their dimension, and find the dimension of the Jacobson radical of the algebra. ...
In this thesis we are interested in the following problem : given two differential k–forms g and f, most of the time they will be assumed closed, on what conditions can we pullback g to f by a map φ ? In other words we ask when it is possible to solve the ...