GF(2)(also denoted , Z/2Z or ) is the finite field of two elements (GF is the initialism of Galois field, another name for finite fields). Notations Z_2 and may be encountered although they can be confused with the notation of 2-adic integers. GF(2) is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively 0 and 1, as usual. The elements of GF(2) may be identified with the two possible values of a bit and to the boolean values true and false.
Permutation circulaireEn mathématiques, une permutation circulaire ou cycle est un cas particulier de permutation. Une permutation circulaire agit comme un décalage circulaire pour un certain nombre d'éléments, et laisse tous les autres inchangés. Les permutations circulaires permettent d'illustrer le fonctionnement général des permutations, puisqu'une permutation quelconque se décompose en un produit de cycles fonctionnant de manière indépendante. Soit un entier k ≥ 2. Une permutation est un k-cycle, ou permutation circulaire de longueur k, s'il existe des éléments a1, .
Catégorie à involutionEn mathématiques, une †-catégorie (catégorie dague, également appelée catégorie involutive ou catégorie à involution) est une catégorie dotée d'une certaine structure appelée dague ou involution. Le nom de catégorie dague a été inventée par Selinger. Une †-catégorie est une catégorie dotée d'un foncteur involutif qui correspond à l'identité sur les objets, où est la catégorie opposée (ie un foncteur contravariant tel que composé par lui-même, donne le foncteur trivial ).
Algèbre involutiveEn mathématiques, une algèbre involutive ou une algèbre à involution est une algèbre munie d'un isomorphisme sur son algèbre opposée qui est involutif, c'est-à-dire de carré égal à l'identité. Dans cet article, K désigne un anneau commutatif, et les algèbres sur un anneau commutatif sont supposées être associatives et unitaires, et les homomorphismes entre algèbres sont supposés être unitaires, c'est-à-dire envoyer 1 sur 1. Soient A une algèbre sur K et μ la multiplication de A.