Semigroup with involutionIn mathematics, particularly in abstract algebra, a semigroup with involution or a *-semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse.
Opérateur adjointEn mathématiques, un opérateur adjoint est un opérateur sur un espace préhilbertien qui est défini, lorsque c'est possible, à partir d'un autre opérateur a et que l'on note a*. On dit aussi que a* est l'adjoint de a. Cet opérateur adjoint permet de faire passer l'opérateur a de la partie gauche du produit scalaire définissant l'espace préhilbertien à la partie droite du produit scalaire. Il s'agit donc d'une généralisation de la notion de matrice adjointe à des espaces de dimension infinie.
Relation binaireEn mathématiques, une relation binaire entre deux ensembles E et F (ou simplement relation entre E et F) est définie par un sous-ensemble du produit cartésien E × F, soit une collection de couples dont la première composante est dans E et la seconde dans F. Cette collection est désignée par le graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation R sont dits en relation par R. Une relation binaire est parfois appelée correspondance entre les deux ensembles.
Algèbre de compositionEn mathématiques, les algèbres de composition sur un corps commutatif sont des structures algébriques qui généralisent simultanément le corps des nombres complexes, le corps non commutatif des quaternions de Hamilton et l'algèbre des octonions de Cayley. Dans cet article, on note K un corps commutatif (de caractéristique quelconque), et les algèbres ne sont pas supposées être associatives ni – a priori du moins – de dimension finie.
AutomorphismeUn automorphisme est un isomorphisme d'un objet mathématique X dans lui-même. Le plus souvent, c'est une bijection de X dans X qui préserve la « structure » de X. On peut le voir comme une symétrie de X. Les automorphismes de X forment un groupe. La définition abstraite d'un automorphisme est la suivante : c'est un endomorphisme qui est en même temps un isomorphisme. Autrement dit, c'est un morphisme d'un objet X d'une catégorie donnée dans lui-même, qui est également un isomorphisme.
1 (nombre)1 (un) est l'entier naturel représentant une entité seule — définition qui n'est autre qu'une pétition de principe. « Un » fait quelquefois référence à l'unité, et « unitaire » est quelquefois utilisé comme un adjectif dans ce sens (par exemple, un segment de longueur unitaire est un segment de longueur 1). Tous les systèmes de numération possèdent un chiffre pour signifier le nombre un. Un (chiffre) Le chiffre « un », symbolisé « 1 », est le chiffre arabe servant notamment à signifier le nombre un.
Pôle et polaireEn géométrie euclidienne, la polaire d'un point par rapport à deux droites sécantes du plan est une droite définie par conjugaison harmonique : les deux droites données, la droite joignant le point à leur intersection, et la polaire forment un faisceau harmonique ; le point est appelé pôle (de cette droite). Cette notion se généralise à celle de polaire par rapport à un cercle, puis par rapport à une conique. La relation entre pôle et polaire est en fait projective : elle est conservée par homographie.
Inversion géométriqueEn géométrie, l'inversion géométrique est l'étude de l'inversion, une transformation du plan euclidien qui envoie des cercles ou des lignes vers d'autres cercles ou lignes et qui préserve les angles entre les courbes de croisement. De nombreux problèmes difficiles en géométrie deviennent beaucoup plus faciles à résoudre lorsqu'une inversion est appliquée. L'inversion semble avoir été découverte par un certain nombre de personnes à la même époque, dont Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs et Ingram (1842-3) et Kelvin (1845).
Opération bit à bitEn logique, une opération bit à bit est un calcul manipulant les données directement au niveau des bits, selon une arithmétique booléenne. Elles sont utiles dès qu'il s'agit de manipuler les données à bas niveau : codages, couches basses du réseau (par exemple TCP/IP), cryptographie, où elles permettent également les opérations sur les corps finis de caractéristique 2. Les opérations bit à bit courantes comprennent des opérations logiques bit par bit et des opérations de décalage des bits, vers la droite ou vers la gauche.
Théorie des anneauxEn mathématiques, la théorie des anneaux porte sur l'étude de structures algébriques qui imitent et étendent les entiers relatifs, appelées anneaux. Cette étude s'intéresse notamment à la classification de ces structures, leurs représentations, et leurs propriétés. Développée à partir de la fin du siècle, notamment sous l'impulsion de David Hilbert et Emmy Noether, la théorie des anneaux s'est trouvée être fondamentale pour le développement des mathématiques au siècle, au travers de la géométrie algébrique et de la théorie des nombres notamment, et continue de jouer un rôle central en mathématiques, mais aussi en cryptographie et en physique.