Truncation (geometry)In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths.
Système de racinesEn mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie des groupes de Lie. Comme les groupes de Lie et les groupes algébriques sont maintenant utilisés dans la plupart des parties des mathématiques, la nature apparemment spéciale des systèmes de racines est en contradiction avec le nombre d'endroits dans lesquels ils sont appliqués.
Truncated 24-cellsIn geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 24-cell. There are two degrees of truncations, including a bitruncation. The truncated 24-cell or truncated icositetrachoron is a uniform 4-dimensional polytope (or uniform 4-polytope), which is bounded by 48 cells: 24 cubes, and 24 truncated octahedra. Each vertex joins three truncated octahedra and one cube, in an equilateral triangular pyramid vertex figure.
PolytopeUn polytope est un objet mathématique géométrique. Le terme de polytope a été inventé par Alicia Boole Stott, la fille du logicien George Boole. Le terme polytope admet plusieurs définitions au sein des mathématiques. Principalement car les usages diffèrent en quelques points selon les pays, mais l'usage américain ayant tendance à s'imposer, on se retrouve confronté avec des usages contradictoires au sein d'un même pays.
Dodécagonedroite|vignette|Un dodécagone régulier et ses angles remarquables. Un dodécagone est une figure de géométrie plane. C'est un polygone à 12 sommets, donc 12 côtés et 54 diagonales. La somme des angles internes d'un dodécagone non croisé est égale à . Un dodécagone régulier est un dodécagone dont les douze côtés ont la même longueur et dont les angles internes ont la même mesure. Il y en a deux : un étoilé (le dodécagramme noté {12/5}) et un convexe (noté {12}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le dodécagone régulier ».
Dodécaèdre rhombiqueEn géométrie, le dodécaèdre rhombique (aussi appelé granatoèdre) est un polyèdre convexe à 12 faces rhombiques identiques. Solide de Catalan, zonoèdre, il est le dual du cuboctaèdre. Pour le différencier du dodécaèdre de Bilinski, autre dodécaèdre rhombique à 12 faces identiques, on précise parfois dodécaèdre rhombique de première espèce. La grande diagonale de chaque face vaut exactement √2 fois la longueur de la petite diagonale, ainsi, les angles aigus de chaque face mesurent 2 tan(1/√2), ou approximativement 70,53°.
Skew polygonIn geometry, a skew polygon is a polygon whose vertices are not all coplanar. Skew polygons must have at least four vertices. The interior surface (or area) of such a polygon is not uniquely defined. Skew infinite polygons (apeirogons) have vertices which are not all colinear. A zig-zag skew polygon or antiprismatic polygon has vertices which alternate on two parallel planes, and thus must be even-sided. Regular skew polygons in 3 dimensions (and regular skew apeirogons in two dimensions) are always zig-zag.
Uniform polytopeIn geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vertex-transitive even-sided polygons that alternate two different lengths of edges). This is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures (star polygons) are allowed, which greatly expand the possible solutions.