Résumé
The supercritical water reactor (SCWR) is a concept Generation IV reactor, designed as a light water reactor (LWR) that operates at supercritical pressure (i.e. greater than 22.1 MPa). The term critical in this context refers to the critical point of water, and must not be confused with the concept of criticality of the nuclear reactor. The water heated in the reactor core becomes a supercritical fluid above the critical temperature of 374 °C, transitioning from a fluid more resembling liquid water to a fluid more resembling saturated steam (which can be used in a steam turbine), without going through the distinct phase transition of boiling. In contrast, the well-established pressurized water reactors (PWR) have a primary cooling loop of liquid water at a subcritical pressure, transporting heat from the reactor core to a secondary cooling loop, where the steam for driving the turbines is produced in a boiler (called the steam generator). Boiling water reactors (BWR) operate at even lower pressures, with the boiling process to generate the steam happening in the reactor core. The supercritical steam generator is a proven technology. The development of SCWR systems is considered a promising advancement for nuclear power plants because of its high thermal efficiency (~45 % vs. ~33 % for current LWRs) and simpler design. As of 2012 the concept was being investigated by 32 organizations in 13 countries. The super-heated steam cooled reactors operating at subcritical-pressure were experimented with in both Soviet Union and in the United States as early as the 1950s and 1960s such as Beloyarsk Nuclear Power Station, Pathfinder and Bonus of GE's Operation Sunrise program. These are not SCWRs. SCWRs were developed from the 1990s onwards. Both a LWR-type SCWR with a reactor pressure vessel and a CANDU-type SCWR with pressure tubes are being developed. A 2010 book includes conceptual design and analysis methods such as core design, plant system, plant dynamics and control, plant startup and stability, safety, fast reactor design etc.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.