Dimension fractaleEn géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Éponge de MengerL'éponge de Menger, parfois appelée éponge de Menger-Sierpinski, est un solide fractal. Il s'agit de l'extension dans une troisième dimension de l'ensemble de Cantor et du tapis de Sierpiński. Elle fut décrite pour la première fois par le mathématicien autrichien Karl Menger . Fichier:Menger-Schwamm.jpg|Éponge de Menger après quatre [[itération]]s. Fichier:Menger sponge (2D).jpg|Face d'une éponge de Menger, ou [[tapis de Sierpiński]]. Fichier:Menger4_Coupe.jpg|Éponge de Menger coupée par un plan transversal.
Benoît MandelbrotBenoît Mandelbrot, né le à Varsovie (Pologne) et mort le à Cambridge (États-Unis), est un mathématicien polono-franco-américain. Il est le découvreur des fractales, nouvelle classe d'objets mathématiques, dont fait partie l'ensemble de Mandelbrot. Il a également travaillé sur des applications originales de la théorie de l'information, telles que la démonstration de la loi de Zipf, et sur des modèles statistiques financiers.