BrahmasphutasiddhantaLe Brāhmasphuṭasiddhānta (ब्राह्मस्फुटसिद्धान्त), datant de 628, est le principal livre écrit par le mathématicien indien Brahmagupta. Il contient de nombreuses avancées en mathématiques : une bonne compréhension du zéro, des règles de manipulation des nombres positifs et négatifs, une méthode de calcul des racines carrés, des méthodes de résolution des équations linéaires et quadratiques, des règles pour les séries... C'est dans cet ouvrage que se trouvent démontrés l'identité de Brahmagupta et le théorème de Brahmagupta.
Mathématiques arabesDans l'histoire des mathématiques, on désigne par mathématiques arabes les contributions apportées par les mathématiciens du monde musulman jusqu'au milieu du . Les sciences arabes, et en premier plan, les mathématiques, se développent dans les califats établis au Moyen-Orient, en Asie centrale, en Afrique du Nord, en Espagne et, au , dans le Sud de la France.
Triplet pythagoricienvignette|Animation illustrant le plus simple triplet pythagoricien : 32 + 42 = 52. En arithmétique, un triplet pythagoricien ou triplet de Pythagore est un triplet (a, b, c) d'entiers naturels non nuls vérifiant la relation de Pythagore : . Le triplet pythagoricien le plus connu est (3, 4, 5). À tout triplet pythagoricien est associé un triangle de côtés entiers a, b, c, forcément rectangle d’hypoténuse c, ainsi qu'un rectangle de côtés entiers a, b, et de diagonale entière c.
Zijvignette|Tables astronomiques d'al-Khwārizmī.|alt=Page d'ouvrage ancien. Un zij (du زيج, zyj, en زیج, zaj) désigne dans l’astronomie persane et l'astronomie arabe un ensemble de tables qui permettent de connaître ainsi que de retrouver (grâce à un certain nombre d'astuces) la position des astres dans le ciel à une date donnée. Il ne s'agit pas de traités d’astronomie théorique mais au contraire de traités d’astronomie pratique, orientés surtout sur l’astrologie qui avait une importance sociale majeure à l'époque de leur rédaction.
Al-KhwârizmîMuḥammad ibn Mūsā al-Khwārizmī (en محمد بن موسى الخوارزمي), généralement appelé Al-Khwârizmî (latinisé en Algoritmi ou Algorizmi), né dans les années 780, probablement à Khiva dans la région du Khwarezm (d'où il prend son nom), dans l'actuel Ouzbékistan, mort vers 850 à Bagdad, est un mathématicien, géographe, astrologue et astronome persan, membre de la Maison de la sagesse de Bagdad. Ses écrits, rédigés en langue arabe, puis traduits en latin à partir du , ont permis l'introduction de l'algèbre en Europe.
Chiffrevignette|329x329px|Les dix chiffres des chiffres arabes, par ordre de valeur. Un chiffre est un signe d'écriture utilisé seul ou en combinaison pour représenter des nombres entiers. Dans un système de numération positionnel comme le système décimal, un petit nombre de chiffres suffit pour exprimer n'importe quelle valeur. Le nombre de chiffres du système est la base. Le système décimal, le plus courant des systèmes de numération, comporte dix chiffres représentant les nombres de zéro à neuf.
VarahamihiraVarāhamihira (ou Varāha Mihira, ou Varāha, ou Mihira, वराह मिहिर (Varaha Mihir) en Hindi) est un mathématicien, astronome et astrologue indien, né vers 505 et décédé en 587. Si sa vie est entourée de légendes et reste floue, il est connu principalement par ses traités de sciences astrales, ou Jyotisha, une discipline pratique et théorique rassemblant les mathématiques, l'astronomie et la divination. Le plus fameux de ses traités est le Pañca-Siddhāntika (que l'on peut traduire par « les cinq canons astronomiques ») qui constitue un résumé de cinq de ses manuscrits sur l'astronomie.
Méthode chakravalaEn mathématiques et plus précisément en arithmétique, la méthode chakravala est un algorithme pour résoudre l'équation de Pell-Fermat. Cette équation est un exemple d'équation diophantienne, c'est-à-dire à coefficients entiers et dont on cherche les solutions entières. Plus précisément, c'est l'équation où n est un entier naturel non carré. Cette méthode fut développée en Inde et ses racines peuvent être retracées jusqu'au avec Aryabhata, suivi par Brahmagupta. Initiée par , elle fut développée plus avant par Bhāskara II.
Brahmagupta's identityIn algebra, Brahmagupta's identity says that, for given , the product of two numbers of the form is itself a number of that form. In other words, the set of such numbers is closed under multiplication. Specifically: Both (1) and (2) can be verified by expanding each side of the equation. Also, (2) can be obtained from (1), or (1) from (2), by changing b to −b. This identity holds in both the ring of integers and the ring of rational numbers, and more generally in any commutative ring.
Triangle de HéronIn geometry, a Heronian triangle (or Heron triangle) is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84. Heron's formula implies that the Heronian triangles are exactly the positive integer solutions of the Diophantine equation that is, the side lengths and area of any Heronian triangle satisfy the equation, and any positive integer solution of the equation describes a Heronian triangle.