Concept

Factorization of polynomials over finite fields

Résumé
In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors. This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm. In practice, algorithms have been designed only for polynomials with coefficients in a finite field, in the field of rationals or in a finitely generated field extension of one of them. All factorization algorithms, including the case of multivariate polynomials over the rational numbers, reduce the problem to this case; see polynomial factorization. It is also used for various applications of finite fields, such as coding theory (cyclic redundancy codes and BCH codes), cryptography (public key cryptography by the means of elliptic curves), and computational number theory. As the reduction of the factorization of multivariate polynomials to that of univariate polynomials does not have any specificity in the case of coefficients in a finite field, only polynomials with one variable are considered in this article. Finite field The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches of mathematics. Due to the applicability of the concept in other topics of mathematics and sciences like computer science there has been a resurgence of interest in finite fields and this is partly due to important applications in coding theory and cryptography. Applications of finite fields introduce some of these developments in cryptography, computer algebra and coding theory. A finite field or Galois field is a field with a finite order (number of elements). The order of a finite field is always a prime or a power of prime. For each prime power q = pr, there exists exactly one finite field with q elements, up to isomorphism. This field is denoted GF(q) or Fq.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (34)
Concepts associés (1)
Polynomial greatest common divisor
In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
Cours associés (1)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.