vignette|Schéma fonctionnel comportant un générateur de tension idéal et une résistance.
La modélisation par blocs fonctionnels simplifie la description du comportement d'un système physique distribué en le réduisant à un graphe (ou « topologie ») constitué d’éléments séparés, les blocs fonctionnels. Elle intervient dans les domaines les plus variés, depuis le réseau de distribution à la linguistique en passant par les circuits (thermiques, électriques ou électroniques, pneumatiques, hydrauliques), les robots, l'acoustique, etc.
Mathématiquement parlant, cette schématisation réduit l’espace d’états du système à un espace de dimension finie, et sa dynamique en temps et en espace à une équation différentielle ordinaire à nombre fini de paramètres.
Les modèles par blocs fonctionnels des circuits électroniques reposent sur l’hypothèse simplificatrice que les attributs du circuit : sa résistance, sa capacité, son inductance propre et son facteur de gain, peuvent se ramener à l'interaction de composants électroniques idéaux : résistors, condensateurs, et bobines, etc. connectés entre eux par un réseau de fils parfaitement conducteurs.
La modèle par blocs fonctionnels est convenable tant que , où est une dimension caractéristique du circuit, et sa longueur d'onde en fonctionnement.
À défaut, si la taille du circuit est de l'ordre de sa longueur d'onde, il faut envisager des modèles plus généraux, tels les systèmes distribués (dont les lignes de transmission), dont la dynamique est décrite par les équations de Maxwell. Une autre façon de comprendre les limitations inhérentes à la notion de graphe fonctionnel est de voir que ce modèle ne tient pas compte du temps de transfert des signaux d'un bloc à l'autre, et plus globalement du temps de propagation à travers un circuit.
Mais à chaque fois que le temps de propagation est négligeable pour l'application, le modèle par blocs fonctionnels convient. Dans les oscillateurs, c'est le cas lorsque le temps de propagation est nettement inférieur à la période du signal.