En théorie des nombres, la formule du nombre de classes relie de nombreux invariants importants d'un corps de nombres à une valeur spécifique de sa fonction zêta de Dedekind.
Nous partons des données suivantes :
K est un corps de nombres.
où est le nombre de plongements réels de K, et plongements complexes K.
la fonction zêta de Dedekind de K.
le nombre de classes, le cardinal du groupe des classes d'idéaux de K.
le régulateur de K.
le nombre de racines de l'unité dans K.
est le discriminant de l'extension .
Alors:
Théorème (formule du nombre de classes). converge absolument pour et se prolonge en une fonction méromorphe définie pour tout complexe s avec un seul pôle simple en , de résidu
Il s'agit de la formule du nombre de classes la plus générale. Dans des cas particuliers, par exemple lorsque K est une extension cyclotomique de , il existe des formules particulières et plus raffinées.
L'idée de la preuve de la formule du nombre de classes est plus facile à voir lorsque K = Q(i). Dans ce cas, l'anneau des entiers sur K sont les entiers de Gauss.
Une manipulation élémentaire montre que le résidu de la fonction zêta de Dedekind en s = 1 est la moyenne des coefficients de la représentation en série de Dirichlet de la fonction zêta de Dedekind. Le n-ième coefficient de la série de Dirichlet est essentiellement le nombre de représentations de n sous la forme d'une somme de deux carrés d'entiers non négatifs. On peut donc calculer le résidu de la fonction zêta de Dedekind à s = 1 en calculant le nombre moyen de représentations. Comme dans l'article sur le problème du cercle de Gauss, on peut calculer cette quantité en approximant le nombre de points de réseau à l'intérieur d'un quart de cercle centré à l'origine, concluant que le résidu est un quart de pi.
La preuve lorsque K est un corps de nombres quadratiques imaginaires arbitraires est très similaire.
Dans le cas général, d'après le théorème des unités de Dirichlet, le groupe d'unités dans l'anneau des entiers de K est infini.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
En théorie des nombres, la formule du nombre de classes relie de nombreux invariants importants d'un corps de nombres à une valeur spécifique de sa fonction zêta de Dedekind. Nous partons des données suivantes : K est un corps de nombres. où est le nombre de plongements réels de K, et plongements complexes K. la fonction zêta de Dedekind de K. le nombre de classes, le cardinal du groupe des classes d'idéaux de K. le régulateur de K. le nombre de racines de l'unité dans K. est le discriminant de l'extension .
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
En mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau O des entiers de K, où N(I) désigne la norme de I (relative au corps Q des rationnels). Cette norme est égale au cardinal de l'anneau quotient O/I. En particulier, ζ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζ ont une signification considérable en théorie algébrique des nombres.
Explore les nombres premiers dans la progression arithmétique, en se concentrant sur les fonctions L, les caractères et la divergence de la somme de 1 sur p pour p congruent à un modulo q.