Résumé
In algebraic geometry, an étale morphism (etal) is a morphism of schemes that is formally étale and locally of finite presentation. This is an algebraic analogue of the notion of a local isomorphism in the complex analytic topology. They satisfy the hypotheses of the implicit function theorem, but because open sets in the Zariski topology are so large, they are not necessarily local isomorphisms. Despite this, étale maps retain many of the properties of local analytic isomorphisms, and are useful in defining the algebraic fundamental group and the étale topology. The word étale is a French adjective, which means "slack", as in "slack tide", or, figuratively, calm, immobile, something left to settle. Let be a ring homomorphism. This makes an -algebra. Choose a monic polynomial in and a polynomial in such that the derivative of is a unit in . We say that is standard étale if and can be chosen so that is isomorphic as an -algebra to and is the canonical map. Let be a morphism of schemes. We say that is étale if and only if it has any of the following equivalent properties: is flat and unramified. is a smooth morphism and unramified. is flat, locally of finite presentation, and for every in , the fiber is the disjoint union of points, each of which is the spectrum of a finite separable field extension of the residue field . is flat, locally of finite presentation, and for every in and every algebraic closure of the residue field , the geometric fiber is the disjoint union of points, each of which is isomorphic to . is a smooth morphism of relative dimension zero. is a smooth morphism and a locally quasi-finite morphism. is locally of finite presentation and is locally a standard étale morphism, that is, For every in , let . Then there is an open affine neighborhood Spec R of and an open affine neighborhood Spec S of such that f(Spec S) is contained in Spec R and such that the ring homomorphism R → S induced by is standard étale. is locally of finite presentation and is formally étale.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (10)
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-110(a): Advanced linear algebra I
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
MATH-211: Group Theory
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
Afficher plus
Séances de cours associées (68)
Groupes et sous-groupes : Définitions, Théorèmes et Morphismes
Couvre les concepts fondamentaux des groupes et sous-groupes, y compris les définitions, les théorèmes et les morphismes.
Finite Maps: Morphisme des schémas
Couvre la morphisme des schémas, la couverture d'affines, l'homomorphisme intégral et les propriétés des cartes finies.
Objets géométriques en Algèbre
Couvre l'étude des modules gradués et des gaines quasi-cohérentes en géométrie algébrique.
Afficher plus
Publications associées (21)
Concepts associés (16)
Glossary of algebraic geometry
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Algebraic space
In mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.
Schéma (géométrie algébrique)
En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.
Afficher plus