**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Concept# Quantum hydrodynamics

Résumé

In condensed matter physics, quantum hydrodynamics is most generally the study of hydrodynamic-like systems which demonstrate quantum mechanical behavior. They arise in semiclassical mechanics in the study of metal and semiconductor devices, in which case being derived from the Boltzmann transport equation combined with Wigner quasiprobability distribution. In quantum chemistry they arise as solutions to chemical kinetic systems, in which case they are derived from the Schrödinger equation by way of Madelung equations.
An important system of study in quantum hydrodynamics is that of superfluidity. Some other topics of interest in quantum hydrodynamics are quantum turbulence, quantized vortices, second and third sound, and quantum solvents. The quantum hydrodynamic equation is an equation in Bohmian mechanics, which, it turns out, has a mathematical relationship to classical fluid dynamics (see Madelung equations).
Some common experimental applications of these studies are in liquid

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Personnes associées

Aucun résultat

Publications associées (5)

Chargement

Chargement

Chargement

Concepts associés (3)

Superfluid helium-4

Superfluid helium-4 is the superfluid form of helium-4, an isotope of the element helium. A superfluid is a state of matter in which matter behaves like a fluid with zero viscosity. The substance, whi

Hélium liquide

vignette|Hélium liquide superfluide dans un récipient.
L’hélium 4 peut être liquéfié à pression ambiante sous une température d'environ , soit .
Son isotope, l'hélium 3, se liquéfie à pression ambi

Richard Feynman

Richard Phillips Feynman (1918-1988) est un physicien américain, l'un des plus influents de la seconde moitié du , en raison notamment de ses travaux sur l'électrodynamique quantique, les quarks et l'

Séances de cours associées (2)

Cours associés (2)

Unités associées

ME-444: Hydrodynamics

Nondimensionalized Navier-Stokes equations result in a great variety of models (Stokes, Lubrification, Euler, Potential) depending on the Reynolds number. The concept of boundary layer enables us then to identify the different components of the hydrodynamic drag.

PHYS-607: Nonlinear fibre optics

Presentation of the different sources of optical nonlinearities in an optical fibre

Aucun résultat

Navid Borhani, Giulia Spinato, John Richard Thome

New trends in the microprocessor industry are leading not only to miniaturization and integration but also to increases in power dissipation rates which now require advanced cooling solutions to prevent thermal damage to the devices. Pulsating heat pipes (PHPs) represent a promising solution for passive on-chip, two-phase cooling of such electronics, providing advantages such as a simple construction and operation in any gravitational orientation. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer responsible for their operation has so far eluded comprehensive description or accurate prediction. This paper reports on flow visualization experiments in a Closed Loop Pulsating Heat Pipe (CLPHP)-charged with R245fa-operating over a range of test conditions. A novel time-strip image processing technique has been applied to the flow videos to extract qualitative details of flow regimes and quantitative flow data concerning the liquid/vapor interface dynamics. The latter can be coupled with thermal data to reveal new details regarding flow characteristics, such as two-phase flow pattern and its oscillation. Four distinct flow regimes and their steady thermal oscillation characteristics have been identified and discussed. (C) 2014 Elsevier Ltd. All rights reserved.

Uncontrolled overtopping during flood events can endanger embankment dams. Erosion of the downstream slope and scouring of its base caused by the high velocity and energy of the overflow can indeed lead to breach formation until complete failure. In this context and faced with the important number of overtopped embankment dams to be rehabilitated, since the early eighties, researchers have investigated surface protection solutions for downstream slope. Overlays against erosion such as seeded goetextile or cable-tied cellular concrete blocks, are not sufficient. In fact, they can resist only short events with low discharge and velocity. Solution to overcome more severe overflow lies in overlays which dissipate flow energy along the downstream embankment slope. Conventional steps resulting from Roller Compacted Concrete (RCC) techniques fulfill efficiently this challenge. However, flows over steep stepped chutes are quite complex, characterizing by great aeration, high turbulence and confused wavy free surface. Then, most of hydraulic studies of such flows are performed on physical model. Yet, understanding and definition of flow behaviour and accurate approach to estimate energy dissipation are still lacking. General guidelines of hydraulics of aerated flows over stepped macro-roughness chutes and for optimal design of protection overlay remain confusing. To contribute to reduce these uncertainties, experimental study of flow over stepped chutes equipped with macro-roughness elements is performed in a laboratory gated flume for mild (~ 1:7H : 1V ) and weak (~ 3H : 1V ) chutes. Thus, they are representative of the range of embankment dams and spillways slopes. Three types of stepped macro-roughness overlays are assessed, namely rectangular conventional steps, steps equipped with endsills fixed on their nose over all the flume width and steps equipped with rectangular spaced blocks. Endsills overlays were characterized with different longitudinal distributions whereas blocks overlays consisted in different transverse patterns. Tests were conducted for the three nappe, transition and skimming flow regimes. Results can be extrapolated to 1/5 to 1/15 scaled prototypes using the Froude similarity with negligible scale effects. Flow depth, local air concentration and longitudinal velocities are measured with a double fiber-optical probe. Pressures at macro-roughness faces are taken with piezo-resistive sensors. Sequent depths of the hydraulic jump forced in the stilling basin at the flume base are measured with ultrasound sensors. Thus, this experimental phase of the thesis has allowed: to define flow parameters (regimes, depths, velocity and air concentration distributions, hydrodynamic forces) for tested overlays, to highlight that air-water flow depth is divided into: a rough boundary layer influenced by shear stress and by drag form (macro-turbulence) caused by macro-roughness, a homogeneous aerated layer which represents the main portion of flow involved in energy dissipation mechanism, a free surface layer which must be considered in the side walls design, to stress that energy dissipation is mainly a question of drag losses, to validate indirect method of hydraulic jump for energy dissipation estimation, to estimate relative energy loss for several stepped macro-roughness overlays. Tests finally show that an optimal alternative to dissipate the overflow energy during an overtopping event consists in spaced blocks, with transverse space larger than the width of block and fixed alternately on conventional steps. However, experimental results remain related and limited to their tested domains. Then, in order to provide more general governing equations of aerated flows over macro-roughness stepped chutes, a numerical modeling of two phase flows over conventional stepped flume was performed in collaboration with the Laboratory of Applied Hydrodynamics and Hydraulic Constructions at University of Liège. A quasi-2D numerical model based on the finite volume method was developed. It consists in applying the classical depth-averaged simplified Navier-Stokes equations (viscosity and Coriolis terms neglected) to a 1D incompressible air-water mixture flow over mild and steep slopes with a stepped topography. Self-aeration process is modeled by a transport equation of depth-averaged air concentration whereas turbulent structures are indirectly implemented through the Boussinesq coefficient. This first 1D-approach of semi-theoretical description of aerated flow over steps is tested for a 30o gated stepped flume and a 52° crested spillway laboratory model. This numerical model leads to realistic results regarding mixture depth, mean flow velocity, air concentration and wave amplitudes of the flow free surface. Finally, on the basis of existing protections of embankment dams and previous studies, the present experimental and numerical results contribute to extend the knowledge of high velocity aerated flows over macro-roughness and to provide elements of guidelines to optimize stepped macro-roughness overlays for embankment dams safety.

Lioubov Kiwi, Benoît Louis, Albert Renken, Pierre Reuse

The hydroxylation of benzene was carried out over a structured catalytic bed of ZSM-5-coated stainless steel grids. The catalysts demonstrated a 97% selectivity to PhOH at benzene conversion 11%. In addn. to achieving the same reactivity as traditional zeolitic fixed beds, the grid catalyst has several advantages gained by special arrangement of the catalytic bed, including: low pressure drop, improved heat and mass transfer and controlled hydrodynamics. [on SciFinder (R)]

2001