Madhava seriesIn mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century Kerala by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are: All three series were later independently discovered in 17th century Europe.
Jyā, koti-jyā and utkrama-jyāJyā, koṭi-jyā and utkrama-jyā are three trigonometric functions introduced by Indian mathematicians and astronomers. The earliest known Indian treatise containing references to these functions is Surya Siddhanta. These are functions of arcs of circles and not functions of angles. Jyā and koti-jyā are closely related to the modern trigonometric functions of sine and cosine. In fact, the origins of the modern terms of "sine" and "cosine" have been traced back to the Sanskrit words jyā and koti-jyā.
Āryabhaṭa's sine tableĀryabhata's sine table is a set of twenty-four numbers given in the astronomical treatise Āryabhatiya composed by the fifth century Indian mathematician and astronomer Āryabhata (476–550 CE), for the computation of the half-chords of a certain set of arcs of a circle. The set of numbers appears in verse 12 in Chapter 1 Dasagitika of Aryabhatiya. It is not a table in the modern sense of a mathematical table; that is, it is not a set of numbers arranged into rows and columns.
Arc de cerclethumb|Un arc de cercle (parme) de rayon R et de longueur d, avec son angle au centre α, sa corde 2c et sa flèche t Un arc de cercle est une portion de cercle limitée par deux points. Deux points A et B d'un cercle découpent celui-ci en deux arcs. Quand les points ne sont pas diamétralement opposés, l'un des arcs est plus petit qu'un demi-cercle et l'autre plus grand qu'un demi-cercle. Le plus petit des arcs est, en général, noté et l'autre parfois noté . On considère un cercle de centre O, et un arc d'extrémités A et B.
Papyrus Rhindvignette|Un extrait du papyrus Rhind. vignette|Détail d'une des deux principales parties du papyrus Rhind, British Museum, EA 10057. Le papyrus Rhind est un célèbre papyrus de la Deuxième Période intermédiaire qui a été écrit par le scribe Ahmès. Son nom vient de l'Écossais Alexander Henry Rhind qui l'acheta en 1858 à Louxor, mais il aurait été découvert par des pilleurs sur le site de la ville voisine de Thèbes. Depuis 1865, il est conservé au British Museum (à Londres).
Triangulationthumb En géométrie et trigonométrie, la triangulation est une technique permettant de déterminer la position d'un point en mesurant les angles entre ce point et d'autres points de référence dont la position est connue, et ceci plutôt que de mesurer directement la distance entre les points. Ce point peut être considéré comme étant le troisième sommet d'un triangle dont on connaît deux angles et la longueur d'un côté. Par analogie, la triangulation fait également référence à l'usage croisé de techniques de recueil de données en étude qualitative, notamment en sciences sociales.
Cis (mathematics)is a mathematical notation defined by cis x = cos x + i sin x, where cos is the cosine function, i is the imaginary unit and sin is the sine function. The notation is less commonly used in mathematics than Euler's formula, eix, which offers an even shorter notation for cos x + i sin x, but cis(x) is widely used as a name for this function in software libraries. The cis notation is a shorthand for the combination of functions on the right-hand side of Euler's formula: where i2 = −1. So, i.e.
List of periodic functionsThis is a list of some well-known periodic functions. The constant function _ () = , where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions. All trigonometric functions listed have period , unless otherwise stated. For the following trigonometric functions: Un is the nth up/down number, Bn is the nth Bernoulli number in Jacobi elliptic functions, The following functions have period and take as their argument.
Nombre d'EulerLes nombres d'Euler E forment une suite d'entiers naturels définis par le développement en série de Taylor suivant : On les appelle aussi parfois les nombres sécants ou nombres zig-zag. Les nombres d'Euler d'indice impair sont tous nuls. Ceux d'indice pair () sont strictement positifs. Les premières valeurs sont : 1 1 5 61 1 385 50 521 2 702 765 199 360 981 2 404 879 675 441 Les nombres d'Euler apparaissent dans le développement en série de Taylor de la fonction sécante (qui est la fonction dans la définition) : et, dans la version alternée de la série, dans celui de la fonction sécante hyperbolique : Ils apparaissent aussi en combinatoire comme nombres de configurations zig-zag de taille paire.
Constant of integrationIn calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function to indicate that the indefinite integral of (i.e., the set of all antiderivatives of ), on a connected domain, is only defined up to an additive constant. This constant expresses an ambiguity inherent in the construction of antiderivatives. More specifically, if a function is defined on an interval, and is an antiderivative of then the set of all antiderivatives of is given by the functions where is an arbitrary constant (meaning that any value of would make a valid antiderivative).