thumb En géométrie et trigonométrie, la triangulation est une technique permettant de déterminer la position d'un point en mesurant les angles entre ce point et d'autres points de référence dont la position est connue, et ceci plutôt que de mesurer directement la distance entre les points. Ce point peut être considéré comme étant le troisième sommet d'un triangle dont on connaît deux angles et la longueur d'un côté. Par analogie, la triangulation fait également référence à l'usage croisé de techniques de recueil de données en étude qualitative, notamment en sciences sociales. thumb|300px|Télémètre optique utilisé par les Allemands durant la Seconde Guerre mondiale En topologie, une triangulation d'un espace topologique X est un complexe simplicial K homéomorphe à X, et un homéomorphisme h : K→X. La triangulation est utile pour déterminer les propriétés d'un espace topologique. En géométrie, une triangulation est une façon de découper une forme géométrique (un plan, un polygone) en une collection de triangles. Un exemple classique est la triangulation de Delaunay. Une des applications de cette démarche est le maillage d'une pièce permettant l'analyse par éléments finis. La triangulation est aussi le processus qui permet de déterminer une distance en calculant la longueur de l'un des côtés d'un triangle, et en mesurant deux angles de ce triangle. Cette méthode utilise des identités trigonométriques. Six cents ans avant l'ère chrétienne, Thalès mit au point une méthode pour évaluer la distance d'un bateau en mer à la côte. Pour avoir une mesure approximative de cette distance, il plaça deux observateurs A et C sur le rivage, éloignés d'une distance b connue. Il demanda à chacun d'entre eux de mesurer l'angle que faisait la droite le reliant au bateau B avec celle le reliant à l'autre observateur. Ce principe de télémétrie optique est utilisé en génie optique, ainsi que dans le domaine militaire lorsque l'on ne dispose pas de radar.
Theo Lasser, Rainer Leitgeb, Martin Villiger, Adrian Bachmann, Roland Michaely, Cédric Blatter