Résumé
In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function to indicate that the indefinite integral of (i.e., the set of all antiderivatives of ), on a connected domain, is only defined up to an additive constant. This constant expresses an ambiguity inherent in the construction of antiderivatives. More specifically, if a function is defined on an interval, and is an antiderivative of then the set of all antiderivatives of is given by the functions where is an arbitrary constant (meaning that any value of would make a valid antiderivative). For that reason, the indefinite integral is often written as although the constant of integration might be sometimes omitted in lists of integrals for simplicity. The derivative of any constant function is zero. Once one has found one antiderivative for a function adding or subtracting any constant will give us another antiderivative, because The constant is a way of expressing that every function with at least one antiderivative will have an infinite number of them. Let and be two everywhere differentiable functions. Suppose that for every real number x. Then there exists a real number such that for every real number x. To prove this, notice that So can be replaced by and by the constant function making the goal to prove that an everywhere differentiable function whose derivative is always zero must be constant: Choose a real number and let For any x, the fundamental theorem of calculus, together with the assumption that the derivative of vanishes, implying that thereby showing that is a constant function. Two facts are crucial in this proof. First, the real line is connected. If the real line were not connected, we would not always be able to integrate from our fixed a to any given x. For example, if we were to ask for functions defined on the union of intervals [0,1] and [2,3], and if a were 0, then it would not be possible to integrate from 0 to 3, because the function is not defined between 1 and 2.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (10)
Équation différentielle
En mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Constant of integration
In calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function to indicate that the indefinite integral of (i.e., the set of all antiderivatives of ), on a connected domain, is only defined up to an additive constant. This constant expresses an ambiguity inherent in the construction of antiderivatives. More specifically, if a function is defined on an interval, and is an antiderivative of then the set of all antiderivatives of is given by the functions where is an arbitrary constant (meaning that any value of would make a valid antiderivative).
Variable (mathématiques)
Dans les mathématiques supérieures et en logique, une variable est un symbole représentant, a priori, un objet indéterminé. On peut cependant ajouter des conditions sur cet objet, tel que l'ensemble ou la collection le contenant. On peut alors utiliser une variable pour marquer un rôle dans un prédicat, une formule ou un algorithme, ou bien résoudre des équations et d'autres problèmes. Il peut s'agir d'une simple valeur, ou d'un objet mathématique tel qu'un vecteur, une matrice ou même une fonction.
Afficher plus
Cours associés (6)
MATH-101(c): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
PHYS-101(g): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Afficher plus
Séances de cours associées (120)
Intégration : développement limité
Couvre le développement limité de l'intégration et des méthodes de calcul du développement limite des fonctions et des antidérivés.
Intégrales en C : Intégration Curviligne
Explore l'intégration curviligne dans le plan complexe, y compris les courbes régulières, les propriétés, les exemples, les antidérivés, le théorème de Cauchy et les critères d'intégrabilité.
Calcul intégral: Fondamentaux et applications
Explore les fondamentaux du calcul intégral, y compris les antidérivés, les sommes de Riemann et les critères d'intégrabilité.
Afficher plus