Résumé
En mathématiques, on parle de récurrence transfinie ou de récursion transfinie pour deux principes reliés mais distincts. Les définitions par récursion transfinie — permettent de construire des objets infinis, et généralisent les définitions de suite par récurrence sur l'ensemble N des entiers naturels en considérant des familles indexées par un ordinal infini quelconque, au lieu de se borner au plus petit d'entre eux qu'est N, appelé ω en tant que nombre ordinal. Les démonstrations par récurrence transfinie — ou induction transfinie — généralisent de même à un ordinal quelconque les récurrences ordinaires sur les entiers. Une fois acquis le concept d'ordinal, on dispose là d'un outil très commode, que l'on peut utiliser conjointement avec l'axiome du choix à la place du lemme de Zorn, pour faire des constructions conformes à l'intuition et où l'on dispose de renseignements précis pour une étude approfondie. La récurrence transfinie s'applique à des ensembles munis d'une relation de bon ordre. Comme tout ensemble muni d'un bon ordre est isomorphe (pour l'ordre) à un et un seul ordinal (où le bon ordre est la relation d'appartenance), nous étudierons essentiellement la récurrence transfinie sur les seuls ordinaux, les résultats étant transposables par isomorphisme. L'extension de la méthode à tout ensemble est possible via le théorème de Zermelo, équivalent (modulo ZF) à l'axiome du choix ; il affirme que tout ensemble peut être muni d'un bon ordre. L'objectif est de démontrer qu'une certaine propriété vaut pour tout objet d'un domaine considéré. En arithmétique du premier ordre on dispose d'un schéma d'axiomes permettant de le faire sur l'ensemble des entiers, voir « Raisonnement par récurrence ». En théorie des ensembles c'est un théorème applicable à tout ensemble bien ordonné (les entiers compris), les ordinaux étant les archétypes d'ensembles bien ordonnés. Il s'étend à la classe des ordinaux, sous la forme d'un schéma d'axiomes.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.