L’égaliseur est une construction catégorique associée à deux morphismes parallèles, qui généralise en un certain sens la notion de noyau en algèbre. La construction duale, le coégaliseur peut s'interpréter comme une généralisation catégorique de la notion de quotient par une relation d'équivalence. On trouve parfois la variante égalisateur.
Soit C une catégorie et deux objets X et Y de cette catégorie. Soient deux morphismes parallèles f et g entre ces objets :
On dit qu'une flèche égalise la paire lorsque les morphismes composés coïncident.
Il y a, potentiellement, de multiples façons d'égaliser une paire.
L'égaliseur le fait d'une manière universelle, au sens où toute autre solution se factorise de manière unique par lui.
Pour une paire de morphismes parallèles f, g, un égaliseur est une flèche qui égalise la paire et telle que, pour toute flèche qui égalise la paire, il existe une unique flèche telle que . Autrement dit, on a le diagramme suivant :
200px.
Une autre manière de dire cela est que l'égaliseur est la limite du diagramme .
On construit le coégaliseur en renversant le sens des flèches dans le diagramme, ou bien comme colimite de , ou encore comme un égaliseur dans la catégorie duale .
Dans la catégorie Set des ensembles, on a et l'injection est un égaliseur.
Dans la catégorie R-Mod des modules sur un anneau R, on a et l'inclusion est encore un égaliseur.
Dans une catégorie possédant un objet zéro (c'est-à-dire possédant un objet à la fois initial et final), l'égaliseur d'un morphisme et du morphisme zéro définit le noyau au sens des catégories : .
Réciproquement, dans une catégorie préadditive, tout égaliseur est obtenu comme un certain noyau.
Tout égaliseur est un monomorphisme.
Tout produit fibré se décompose comme la composition d'un produit suivi d'un égaliseur. Si une catégorie a des produits fibrés et des produits, alors elle a des égaliseurs.
Si une catégorie admet tous les produits (resp. coproduits) finis et tous les égaliseurs (resp. coégaliseurs), alors elle admet toutes les limites (resp.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, la catégorie des espaces topologiques est une construction qui rend compte abstraitement des propriétés générales observées dans l'étude des espaces topologiques. Ce n'est pas la seule catégorie qui possède les espaces topologiques comme objet, et ses propriétés générales sont trop faibles ; cela motive la recherche de « meilleures » catégories d'espaces. C'est un exemple de catégorie topologique.
En théorie des catégories, un diagramme est une collection d'objets et de flèches d'une catégorie donnée. En principe, un diagramme n'est pas un objet mathématique mais seulement une figure, destinée à faciliter la lecture d'un raisonnement. En pratique, on se sert souvent des diagrammes comme de symboles abréviateurs, qui évitent de nommer tous les objets et les flèches que l'on veut considérer; on dit souvent que "considérons le diagramme ci-dessus" au lieu de dire par exemple dans la catégorie des ensembles: "considérons quatre ensembles et une application de dans .
La théorie des catégories est une théorie unificatrice des Mathématiques. La notion de noyau est une notion centrale en algèbre. Ici, le concept de noyau est un concept général applicable à de nombreuses branches des mathématiques abstraites. Considérons dans une catégorie deux flèches et de même source et de même but . Une flèche de but est dite noyau ou égalisateur du couple si elle vérifie les deux propriétés suivantes : (1) On a uk=vk (2) Pour toute flèche telle que l'on ait , il existe une flèche unique telle que .
In the enriched setting, the notions of injective and projective model structures on a category of enriched diagrams also make sense. In this paper, we prove the existence of these model structures on enriched diagram categories under local presentability, ...