Hermitian manifoldIn mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure. A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure (U(n) structure) on the manifold.
Théorie de l'obstructionEn mathématiques, la théorie de l'obstruction est le nom donné en fait à plusieurs théories topologiques distinctes dont le but est de déterminer des invariants cohomologiques. Le sens le plus ancien donné à l'expression « théorie de l'obstruction » est, en topologie algébrique, et plus précisément en théorie de l'homotopie, celui d'une procédure, définie par récurrence sur la dimension, permettant de prolonger une application continue définie sur un complexe simplicial, ou sur un CW-complexe.
Vector-valued differential formIn mathematics, a vector-valued differential form on a manifold M is a differential form on M with values in a vector space V. More generally, it is a differential form with values in some vector bundle E over M. Ordinary differential forms can be viewed as R-valued differential forms. An important case of vector-valued differential forms are Lie algebra-valued forms. (A connection form is an example of such a form.) Let M be a smooth manifold and E → M be a smooth vector bundle over M.
Fibré adjointEn géométrie différentielle, le fibré adjoint est un fibré vectoriel associé particulier d'un -fibré principal. Il joue un rôle important en théorie de jauge où les transformations de jauge infinitésimales, les vecteurs tangents à l'espace des formes de connexions et la 2-forme de courbure sont toutes des formes différentielles à valeurs dans le fibré adjoint. Soient : un groupe de Lie ; l'algèbre de Lie de ; une variété différentielle ; un -fibré principal sur ; l'action de groupe à droite de sur ; la représentation adjointe de sur son algèbre de Lie .
Solder formIn mathematics, more precisely in differential geometry, a soldering (or sometimes solder form) of a fiber bundle to a smooth manifold is a manner of attaching the fibers to the manifold in such a way that they can be regarded as tangent. Intuitively, soldering expresses in abstract terms the idea that a manifold may have a point of contact with a certain model Klein geometry at each point. In extrinsic differential geometry, the soldering is simply expressed by the tangency of the model space to the manifold.