Concept

Théorie de l'obstruction

En mathématiques, la théorie de l'obstruction est le nom donné en fait à plusieurs théories topologiques distinctes dont le but est de déterminer des invariants cohomologiques. Le sens le plus ancien donné à l'expression « théorie de l'obstruction » est, en topologie algébrique, et plus précisément en théorie de l'homotopie, celui d'une procédure, définie par récurrence sur la dimension, permettant de prolonger une application continue définie sur un complexe simplicial, ou sur un CW-complexe. Traditionnellement appelée théorie de l'obstruction d'Eilenberg, du nom de Samuel Eilenberg, cette procédure met en jeu des groupes de cohomologie dont les coefficients sont pris dans des groupes d'homotopie, pour définir des « blocages » à ces prolongements, appelés obstructions. Par exemple, pour étendre une application f d'un complexe simplicial X vers un autre, Y, définie initialement sur le 0-squelette de X (les sommets de X), une extension au 1-squelette (les arêtes) sera possible si Y est « suffisamment » connecté par arcs ; étendre ensuite f au 2-squelette (l'ensemble des faces triangulaires) revient à remplir l'intérieur des images des arêtes bordant chaque triangle, ce qui n'est possible que si le triangle formé par les images des arêtes est contractile (homotopiquement réductible à un point). Le calcul des obstructions revient à mesurer précisément (pour f, X et Y donnés) ce qu'il faudrait modifier pour que f soit effectivement prolongeable. En topologie géométrique, la théorie de l'obstruction a pour objectif de déterminer si une variété topologique peut être munie d'une , et si une variété linéaire par morceaux peut être munie d'une structure de variété différentielle. On sait en particulier qu'en dimension 2 (Tibor Radó), et 3 (Edwin E. Moise), les notions de variété topologique et de variété linéaire par morceaux coïncident, mais que ce n'est plus vrai en dimension 4. D'autre part, en dimensions 6, les variétés linéaires par morceaux sont des variétés différentielles.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.