In quantum field theory, partition functions are generating functionals for correlation functions, making them key objects of study in the path integral formalism. They are the imaginary time versions of statistical mechanics partition functions, giving rise to a close connection between these two areas of physics. Partition functions can rarely be solved for exactly, although free theories do admit such solutions. Instead, a perturbative approach is usually implemented, this being equivalent to summing over Feynman diagrams.
In a -dimensional field theory with a real scalar field and action , the partition function is defined in the path integral formalism as the functional
where is a fictitious source current. It acts as a generating functional for arbitrary n-point correlation functions
The derivatives used here are functional derivatives rather than regular derivatives since they are acting on functionals rather than regular functions. From this it follows that an equivalent expression for the partition function reminiscent to a power series in source currents is given by
In curved spacetimes there is an added subtlety that must be dealt with due to the fact that the initial vacuum state need not be the same as the final vacuum state. Partition functions can also be constructed for composite operators in the same way as they are for fundamental fields. Correlation functions of these operators can then be calculated as functional derivatives of these functionals. For example, the partition function for a composite operator is given by
Knowing the partition function completely solves the theory since it allows for the direct calculation of all of its correlation functions. However, there are very few cases where the partition function can be calculated exactly. While free theories do admit exact solutions, interacting theories generally do not. Instead the partition function can be evaluated at weak coupling perturbatively, which amounts to regular perturbation theory using Feynman diagrams.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
This course presents modern aspects of theoretical condensed matter physics with interfaces to statistical physics, quantum information theory, quantum field theory and quantum simulation.
This course introduces statistical field theory, and uses concepts related to phase transitions to discuss a variety of complex systems (random walks and polymers, disordered systems, combinatorial o
Une 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
En physique, une constante de couplage est un nombre caractéristique de l'intensité d'une interaction. En physique classique les constantes de couplage interviennent en mécanique et en électromagnétisme : la constante de couplage de deux circuits linéaires, comme l'inductance mutuelle M d'un transformateur. Voir aussi l'article Couplage de deux oscillateurs électriques ; la constante de couplage de deux systèmes mécaniques, souvent notée k, caractérise leur dépendance l'un à l'autre.
In theoretical physics, a source field is a background field coupled to the original field as This term appears in the action in Feynman's path integral formulation and responsible for the theory interactions. In Schwinger's formulation the source is responsible for creating or destroying (detecting) particles. In a collision reaction a source could the other particles in the collision. Therefore, the source appears in the vacuum amplitude acting from both sides on Green function correlator of the theory.
Couvre les bases de la théorie quantique des champs perturbative dans l'espace Anti-de Sitter.
Explore les fonctions de corrélation euclidienne et la transition vers le temps réel en utilisant la rotation Wick, ainsi qu'une discussion sur les bonnes et mauvaises habitudes.
Explore les diagrammes de Feynman pour l'oscillateur anharmonique, couvrant les fonctions de partition thermique, les propagateurs euclidéens et les fonctions de corrélation.
Kontsevich and Soibelman reformulated and slightly generalised the topological recursion of [43], seeing it as a quantisation of certain quadratic Lagrangians in T*V for some vector space V. KS topological recursion is a procedure which takes as initial da ...
Quantum Field Theories are a central object of interest of modern physics, describing fundamental interactions of matter. However, current methods give limited insight into strongly coupling theories. S-matrix bootstrap program, described in this thesis, a ...
The hunt for exotic quantum phase transitions described by emergent fractionalized de-grees of freedom coupled to gauge fields requires a precise determination of the fixed point structure from the field theoretical side, and an extreme sensitivity to weak ...