Une 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
C'est Richard Feynman qui a introduit les intégrales de chemin en physique dans sa thèse, soutenue en , portant sur la formulation de la mécanique quantique basée sur le lagrangien. La motivation originale provient du désir d'obtenir une formulation quantique de la théorie de l'absorbeur de Wheeler et Feynman à partir d'un lagrangien (plutôt que d'un hamiltonien) comme point de départ. En raison de la seconde Guerre mondiale, ces résultats n'ont été publiés qu'en 1948. Cet outil mathématique s'est rapidement imposé en physique théorique avec sa généralisation à la théorie quantique des champs, permettant notamment une quantification des théories de jauge non-abéliennes plus simple que la procédure de quantification canonique.
Par ailleurs, le mathématicien Mark Kac a ensuite développé un concept similaire pour la description théorique du mouvement brownien, s'inspirant de résultats obtenus par Norbert Wiener dans les années 1920. On parle dans ce cas de la formule de Feynman-Kac, qui est une intégrale pour la mesure de Wiener.
Alors qu'il est étudiant de sous la direction de Wheeler à l'université de Princeton, le jeune Feynman cherche une méthode de quantification basée sur le lagrangien pour pouvoir décrire un système ne possédant pas nécessairement d'hamiltonien. Sa motivation première est de quantifier la nouvelle formulation de l'électrodynamique classique basée sur l'action à distance qu'il vient juste de développer avec Wheeler.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Couvre les concepts mathématiques liés aux opérations vectorielles et à la géométrie, y compris les normes scalaires de produit et vectorielles.
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
The course builds on the course QFT1 and QFT2 and develops in parallel to the course on Gauge Theories and the SM.
En physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
En physique, la rotation de Wick est une méthode pour trouver une solution à un problème mathématique dans un espace de Minkowski à partir d'un problème relatif à un espace euclidien, à l’aide d’une transformation qui substitue une variable imaginaire pure à une variable réelle. La est la transformation complexe où est l'unité imaginaire et est le temps euclidien. Son éponyme est le physicien théoricien italien Gian-Carlo Wick (-) qui l'a proposée en .
Functional integration is a collection of results in mathematics and physics where the domain of an integral is no longer a region of space, but a space of functions. Functional integrals arise in probability, in the study of partial differential equations, and in the path integral approach to the quantum mechanics of particles and fields. In an ordinary integral (in the sense of Lebesgue integration) there is a function to be integrated (the integrand) and a region of space over which to integrate the function (the domain of integration).
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
We study applications of spectral positivity and the averaged null energy condition (ANEC) to renormalization group (RG) flows in two-dimensional quantum field theory. We find a succinct new proof of the Zamolodchikov c-theorem, and derive further independ ...
New York2024
We establish shape holomorphy results for general weakly- and hyper-singular boundary integral operators arising from second-order partial differential equations in unbounded two-dimensional domains with multiple finite-length open arcs. After recasting th ...
The method of moments (MOM), as introduced by Roger F. Harrington more than 50 years ago, is reviewed in the context of the classic potential integral equation (IE) formulations applied to both electrostatic (part 1) and electrodynamic or full-wave problem ...