Résumé
Le terme « chaos quantique » désigne un champ de recherches ouvert dans les années 1970 qui est issu des succès de la théorie du chaos en dynamique hamiltonienne classique ; il tente essentiellement de répondre à la question : La notion de chaos renvoie à un concept qui remonte à l'Antiquité, dans la perspective d'une explication du monde reposant sur le principe de l'harmonie et du cosmos. Les recherches ont montré que : il n'existe pas de « chaos quantique » au sens strict du terme, c'est-à-dire qu'il n'existe pas de divergence exponentielle des états quantiques au cours du temps dans l'espace de Hilbert qui serait l'analogue de la divergence exponentielle des orbites dans l'espace des phases classique. Cette absence de « sensibilité aux conditions initiales » en mécanique quantique est lié au fait que l'équation de Schrödinger est une équation linéaire ; c'est pourquoi Michael Berry a suggéré d'utiliser l'expression « chaologie quantique » à la place de « chaos quantique » ; cependant, les systèmes physiques classiquement chaotiques présentent certaines propriétés quantiques clairement distinctes de celles des systèmes classiquement intégrables : il existe en quelque sorte des « signatures » quantiques du chaos classique sous-jacent. En utilisant la formulation de Richard Feynman en intégrale de chemin de la mécanique quantique, Martin Gutzwiller a démontré en 1971 une relation intégrale liant à la limite semi-classique le spectre d'énergie quantique d'un système physique aux orbites périodiques classiques de ce même système. Cette relation est aujourd'hui appelée formule des traces de Gutzwiller. Or, les orbites périodiques ont des propriétés très différentes selon que la dynamique hamiltonienne classique est intégrable ou chaotique. Il est intéressant de remarquer qu'il existe un système physique pour lequel la formule des traces approchée de Gutzwiller est en fait exacte : c'est le flot géodésique sur une surface compacte à courbure négative constante.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.