Concept

Billard (mathématiques)

Résumé
Un billard mathématique est un système dynamique dans lequel une particule alterne des mouvements libres sur une surface et des rebonds sur une paroi, sans perte de vitesse. L'angle de rebond est identique à l'angle d'incidence au moment de choc. Ces systèmes dynamiques sont des idéalisations hamiltoniennes du jeu de billard, mais où le domaine encadré par la frontière peut avoir d'autres formes qu'un rectangle et même être multidimensionnel. Les billards dynamiques peuvent aussi être étudiés sur des géométries non euclidiennes. De fait, les toutes premières études de billards établissaient leur mouvement ergodique sur des surfaces de courbure négative constante. L'étude de billards où la particule évolue à l'extérieur d'une zone donnée s'appelle la théorie du billard externe. Entre chaque rebond, le mouvement de la particule dans le billard s'effectue à énergie constante. C'est une ligne droite, ou une géodésique si la métrique riemannienne de la table du billard n'est pas plane. Les questions posées par les billards mettent en jeu de nombreuses notions de géométrie, d'analyse (notamment de topologie) de probabilités. Les billards mathématiques capturent toute la complexité des systèmes hamiltoniens, de l'intégrabilité au mouvement chaotique, sans les difficultés d'avoir à intégrer les équations du mouvement pour déterminer sa carte de Poincaré. Birkhoff a démontré qu’un système de billard avec une table elliptique est intégrable. L'hamiltonien d'une particule de masse m se déplaçant librement sans frottement sur une surface s'exprime : où V(q) est un potentiel défini pour valoir zéro à l'intérieur de la région Ω dans laquelle la particule peut se déplacer et l'infini ailleurs : Cette forme de potentiel garantit un rebond élastique (similaire à une réflexion optique) sur la frontière. Le terme cinétique garantit que la particule se déplace à énergie constante. Si la particule évolue dans un champ non euclidien, l’hamiltonien devient : où g(q) est le tenseur métrique au point q ∈ Ω.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.