Résumé
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in Postnikov systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. A mapping satisfies the homotopy lifting property for a space if: for every homotopy and for every mapping (also called lift) lifting (i.e. ) there exists a (not necessarily unique) homotopy lifting (i.e. ) with The following commutative diagram shows the situation: A fibration (also called Hurewicz fibration) is a mapping satisfying the homotopy lifting property for all spaces The space is called base space and the space is called total space. The fiber over is the subspace A Serre fibration (also called weak fibration) is a mapping satisfying the homotopy lifting property for all CW-complexes. Every Hurewicz fibration is a Serre fibration. A mapping is called quasifibration, if for every and holds that the induced mapping is an isomorphism. Every Serre fibration is a quasifibration. The projection onto the first factor is a fibration. That is, trivial bundles are fibrations. Every covering satisfies the homotopy lifting property for all spaces. Specifically, for every homotopy and every lift there exists a uniquely defined lift with Every fiber bundle satisfies the homotopy lifting property for every CW-complex. A fiber bundle with a paracompact and Hausdorff base space satisfies the homotopy lifting property for all spaces. An example for a fibration, which is not a fiber bundle, is given by the mapping induced by the inclusion where a topological space and is the space of all continuous mappings with the compact-open topology. The Hopf fibration is a non trivial fiber bundle and specifically a Serre fibration.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
MATH-497: Homotopy theory
We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-323: Topology III - Homology
Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
Afficher plus
Séances de cours associées (32)
Structure du modèle Serre en haut
Explore la structure du modèle Serre sur Top, en mettant l'accent sur l'homotopie droite et gauche.
Théorie de l'homotopie des complexes de chaînes
Explore la théorie de l'homotopie des complexes de chaînes, y compris la construction d'objets de chemin et les fibrations.
Caractérisation des fibres dans les complexes de chaînes
Explore la caractérisation des fibrations et des fibrations acycliques dans les complexes en chaîne.
Afficher plus
Publications associées (17)

Cochains are all you need

In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
EPFL2024

Towards the K(2)-local homotopy groups of Z

Philip Egger

Previously (Adv. Math. 360 (2020) art. id. 106895), we introduced a class (Z) over tilde of 2-local finite spectra and showed that all spectra Z is an element of (Z) over tilde admit a v(2)-self-map of periodicity 1. The aim here is to compute the K(2)-loc ...
GEOMETRY & TOPOLOGY PUBLICATIONS2020

Brillouin scattering in gas-filled hollow-core fibres

Flavien Gyger

Edward E. Hagenlocker and William G. Rado demonstrated Brillouin interaction in gas for the first time in 1965, right after the very first demonstrations of stimulated Brillouin scattering in solid materials. In their experiment, they used a megawatt pulse ...
EPFL2020
Afficher plus
Personnes associées (1)
Concepts associés (24)
Groupe d'homotopie
En mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .
Théorie de l'homotopie
La théorie de l'homotopie est une branche des mathématiques issue de la topologie algébrique dans laquelle les espaces et applications sont considérés à homotopie près. La notion topologique de déformation est étendue à des contextes algébriques notamment via les structures de complexe différentiel puis d’algèbre A. Étant donné deux équivalences d’homotopie f : X′ → X et g : Y → Y′, l’ensemble des classes d'homotopie des applications continues entre X et Y s’identifie à celui des applications entre X′ et Y′ par composition avec f et g.
Homotopy fiber
In mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups.
Afficher plus