The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in Postnikov systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. A mapping satisfies the homotopy lifting property for a space if: for every homotopy and for every mapping (also called lift) lifting (i.e. ) there exists a (not necessarily unique) homotopy lifting (i.e. ) with The following commutative diagram shows the situation: A fibration (also called Hurewicz fibration) is a mapping satisfying the homotopy lifting property for all spaces The space is called base space and the space is called total space. The fiber over is the subspace A Serre fibration (also called weak fibration) is a mapping satisfying the homotopy lifting property for all CW-complexes. Every Hurewicz fibration is a Serre fibration. A mapping is called quasifibration, if for every and holds that the induced mapping is an isomorphism. Every Serre fibration is a quasifibration. The projection onto the first factor is a fibration. That is, trivial bundles are fibrations. Every covering satisfies the homotopy lifting property for all spaces. Specifically, for every homotopy and every lift there exists a uniquely defined lift with Every fiber bundle satisfies the homotopy lifting property for every CW-complex. A fiber bundle with a paracompact and Hausdorff base space satisfies the homotopy lifting property for all spaces. An example for a fibration, which is not a fiber bundle, is given by the mapping induced by the inclusion where a topological space and is the space of all continuous mappings with the compact-open topology. The Hopf fibration is a non trivial fiber bundle and specifically a Serre fibration.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.