In chemistry and materials science, ultrahydrophobic (or superhydrophobic) surfaces are highly hydrophobic, i.e., extremely difficult to wet. The contact angles of a water droplet on an ultrahydrophobic material exceed 150°. This is also referred to as the lotus effect, after the superhydrophobic leaves of the lotus plant. A droplet striking these kinds of surfaces can fully rebound like an elastic ball. Interactions of bouncing drops can be further reduced using special superhydrophobic surfaces that promote symmetry breaking, pancake bouncing or waterbowl bouncing. In 1805, Thomas Young defined the contact angle θ by analysing the forces acting on a fluid droplet resting on a smooth solid surface surrounded by a gas. where = Interfacial tension between the solid and gas = Interfacial tension between the solid and liquid = Interfacial tension between the liquid and gas θ can be measured using a contact angle goniometer. Wenzel determined that when the liquid is in intimate contact with a microstructured surface, θ will change to θW* where r is the ratio of the actual area to the projected area. Wenzel's equation shows that microstructuring a surface amplifies the natural tendency of the surface. A hydrophobic surface (one that has an original contact angle greater than 90°) becomes more hydrophobic when microstructured – its new contact angle becomes greater than the original. However, a hydrophilic surface (one that has an original contact angle less than 90°) becomes more hydrophilic when microstructured – its new contact angle becomes less than the original. Cassie and Baxter found that if the liquid is suspended on the tops of microstructures, θ will change to θCB* where φ is the area fraction of the solid that touches the liquid. Liquid in the Cassie-Baxter state is more mobile than in the Wenzel state. It can be predicted whether the Wenzel or Cassie-Baxter state should exist by calculating the new contact angle with both equations. By a minimization of free energy argument, the relation that predicted the smaller new contact angle is the state most likely to exist.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
PHYS-441: Statistical physics of biomacromolecules
Introduction to the application of the notions and methods of theoretical physics to problems in biology.
ME-446: Liquid-gas interfacial heat and mass transfer
This course covers the fundamental and practical analysis of liquid-gas interfacial heat and mass transfer in various contexts including power generation, water purification, and cooling. Students wil
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
Afficher plus
Publications associées (122)
Concepts associés (4)
Effet lotus
L'effet lotus appelé aussi autonettoyage de la feuille, est un phénomène de superhydrophobie causé par une rugosité nanométrique. Son nom provient du lotus (Nelumbo spp.), dont les feuilles présentent cette caractéristique. D’autres plantes, comme les feuilles de capucine (Tropaeolum spp.), de chou, de roseau (Phragmites spp.), de taro (Colocasia esculenta) ou de l'ancolie (Aguilegia spp.), et certains animaux (par exemple les plumes des oiseaux aquatiques), notamment des insectes, montrent le même comportement.
Mouillage (physique)
Le mouillage est le comportement d'un liquide en contact avec une surface solide. Il désigne d'une part la forme que prend le liquide à la surface du solide (mouillage statique) et la façon dont il se comporte lorsqu'on essaie de le faire couler (hystérèse, ancrage, mouillage dynamique). Ces comportements découlent des interactions intermoléculaires entre les molécules de liquide, solide et de gaz à l'interface entre les trois milieux. Ces interactions sont modélisées à l'échelle macroscopique via la tension superficielle.
Hydrophobie (physique)
L’hydrophobie (du grec υδρο, hydro = eau, et Φόβος, phóbos = répulsion) caractérise les surfaces qui semblent repousser l'eau. En réalité, il ne s'agit pas d'une réelle répulsion, mais plutôt du fait que l'eau étant une molécule polaire, elle a une très nette attirance préférentielle pour les autres molécules polaires, ce qui va amener ces molécules à s'assembler entre elles et former des billes qui semblent être repoussées par les molécules non polaires avec lesquelles elles n'ont pas une aussi forte affinité, alors qu'en réalité, ce sont les affinités entre les molécules polaires qui chassent vers l'extérieur de ces billes les molécules qui n'ont pas la même affinité avec elle - un peu de la même façon que le gradient de pression de l'eau chasse de son sein les corps moins denses (qui n'ont donc pas la capacité de générer en leur sein un gradient de pression aussi raide).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.