Arbre de jeuEn théorie des jeux, un arbre de jeu est un arbre (au sens de la théorie des graphes) dont les nœuds sont des positions dans un jeu et dont les arêtes sont des mouvements. L'arbre de jeu complet est l'arbre de jeu commençant à la position initiale et contenant tous les mouvements possibles depuis chaque position. vignette| Les deux premiers de l'arbre de jeu pour le tic-tac-toe. Le diagramme ci-contre montre comment coder dans une représentation arborescente le premier tour de jeu au tic-tac-toe : ce sont les deux premiers niveaux dans l'arborescence, la racine représentant la position initiale (une grille vide, en l'occurrence).
Théorie des jeux combinatoiresLa théorie des jeux combinatoires est une théorie mathématique qui étudie les jeux à deux joueurs comportant un concept de position, et où les joueurs jouent à tour de rôle un coup d'une façon définie par les règles, dans le but d'atteindre une certaine condition de victoire. La théorie des jeux combinatoires a pour objet les jeux à information complète où le hasard n'intervient pas, comme les échecs, les dames ou le jeu de go.
PSPACE-completeIn computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE.
Jeu de stratégie combinatoire abstraitOn appelle jeu de stratégie combinatoire abstrait ou jeu combinatoire à information parfaite, selon la définition donnée par la théorie des jeux combinatoires, un jeu, généralement un jeu de société : opposant généralement deux joueurs ou deux équipes (ou bien un joueur humain seul contre un ordinateur « intelligent ») ; dans lequel les joueurs ou équipes jouent à tour de rôle ; dont tous les éléments sont connus (jeu à information complète) ; où le hasard n'intervient pas pendant le déroulement du jeu.
Go (jeu)Le go, également appelé jeu de go, appelé en japonais , ou dans certaines expressions ; en chinois (), en Hanyu pinyin wéiqí, la prononciation shanghaïenne Wedji; et en coréen baduk (바둑), est un jeu de société originaire de Chine. Il oppose deux adversaires qui placent à tour de rôle des pierres, respectivement noires et blanches, sur les intersections d'un tablier quadrillé appelé goban en japonais ( en chinois). Le but est de contrôler le plan de jeu en y construisant des « territoires ».
State space (computer science)In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory. For instance, the toy problem Vacuum World has a discrete finite state space in which there are a limited set of configurations that the vacuum and dirt can be in. A "counter" system, where states are the natural numbers starting at 1 and are incremented over time has an infinite discrete state space.
Jeu séquentielvignette| Les échecs sont un exemple de jeu séquentiel. En théorie des jeux, un jeu séquentiel est un jeu où les joueurs choisissent leur actions à tour de rôle. Pour qu'un jeu soit séquentiel il faut que certaines informations sur les choix d'un joueur à son tour soient connues par les joueurs suivants avant qu'ils ne fassent eux-mêmes leur choix; sans cela, le tour du premier joueur n'aurait pas d'effet sur la stratégie des suivants. Les jeux séquentiels sont donc régis par l'axe du temps, et peuvent être représentés sous forme d'arbres de décision.
Algorithme minimaxL'algorithme minimax (aussi appelé algorithme MinMax) est un algorithme qui s'applique à la théorie des jeux pour les jeux à deux joueurs à somme nulle (et à information complète) consistant à minimiser la perte maximum (c'est-à-dire dans le pire des cas). Pour une vaste famille de jeux, le théorème du minimax de von Neumann assure l'existence d'un tel algorithme, même si dans la pratique il n'est souvent guère aisé de le trouver.
Échecsvignette|Anand - Kramnik, championnat du monde en 2008. vignette|Une partie simultanée donnée par le GM ukrainien Andrij Maksimenko à Toruń, Pologne. vignette|Enluminure, Liber de Moribus, vers 1300. vignette|Joueurs sur un échiquier géant à Lugano, Suisse. alt=Propriété exclusive de Thelma Ackermann. |vignette|Famille de la noblesse française jouant aux échecs dans les années 1860, carte de visite.
Programme d'échecsvignette|Jeu d'échecs électronique des années 1990 avec écran LCD. Un programme d'échecs est un programme informatique conçu pour jouer au jeu d'échecs. L'histoire des machines joueuses d'échecs n'attend pas le développement de l'électronique et de l'informatique : la première fut l'automate turc inventée en 1769 par Johan Wolfgang von Kempelen, qui joua notamment contre l'impératrice Catherine II et Napoléon Bonaparte. C'était en fait un homme de petite taille caché dans la machine.