Résumé
La loi d'action de masse (ou loi de Guldberg et Waage) est une loi qui permet de définir l'équilibre d'un système réactionnel. Elle est définie par : en notant la constante d'équilibre, l'activité chimique de chaque espèce et \nu_{i} le coefficient stœchiométrique algébrique de chaque espèce. La loi d'action de masse a été exposée en 1879 par les chimistes norvégiens Cato Guldberg et Peter Waage à partir de leur découverte commune publiée en 1864. En 1877, van 't Hoff est arrivé indépendamment à des conclusions similaires, mais n'était pas au courant des travaux antérieurs, ce qui a incité Guldberg et Waage à donner un compte rendu plus complet et plus développé de leurs travaux, en allemand, en 1879. Van 't Hoff a alors accepté leur priorité, cependant elle a surtout connu un rayonnement scientifique prometteur à partir des développements menés en 1887 par van 't Hoff qui lui confère un rôle fondamental en chimie analytique. Cette loi explicite les conditions de l'équilibre chimique dans la continuité des travaux de Claude-Louis Berthollet, Henry Le Chatelier, Jacobus Henricus van 't Hoff et Willard Gibbs. Un système réactionnel, soumis à une réaction chimique ayant atteint un équilibre, est caractérisé par le fait que les concentrations des réactifs de départ et des produits formés sont reliées par une expression dont la valeur est constante à une température donnée. La constante ainsi définie est appelée constante d'équilibre de Guldberg et Waage. Ils abordèrent également l'aspect cinétique chimique de l'équilibre chimique en proposant l'hypothèse que l'équilibre obtenu n'est pas statique mais dynamique ou stationnaire : les vitesses de la réaction directe et de la réaction inverse étant égales. Une réaction chimique évolue tant que son enthalpie libre de réaction à température T, et pression p constantes, , pour un avancement donné de la réaction, , est négative. L'équilibre est atteint lorsque (voir Équilibre chimique) où : étant le potentiel chimique. Or par définition de l'activité chimique de chaque espèce : où est le potentiel chimique standard à T.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (14)
MSE-204: Thermodynamics for materials science
This course establishes the basic concepts of thermodynamics and defines the main state functions. The concepts are then applied to the study of phase diagrams of various systems.
PHYS-101(f): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
ChE-340: The engineering of chemical reactions
This course applies concepts from chemical kinetics and mass and energy balances to address chemical reaction engineering problems, with a focus on industrial applications. Students develop the abilit
Afficher plus
Séances de cours associées (41)
Feux d'artifice lunaires: Affichage balistique
Explore l'affichage balistique des feux d'artifice sur la lune, couvrant la dynamique d'explosion et les calculs d'impact.
Kinétique chimique: taux de réaction
Explore la cinétique chimique, y compris les vitesses de réaction, l'état de transition et les catalyseurs, en mettant l'accent sur l'impact de la concentration et de la température sur les vitesses de réaction.
Catalyse hétérogène : effets de transport
Explore les fondamentaux hétérogènes de la catalyse, les effets de transport et l'analyse des données de taux dans les réactions catalytiques.
Afficher plus
Publications associées (64)

Drops: Controlled crystallization of organic crystals and their use as matrix materials for encapsulation of volatiles

Aysu Ceren Okur

Encapsulation techniques open up new possibilities to control the kinetics and location of the release of active ingredients. Despite the progresses achieved to obtain a better control over the dimensions and composition of the capsules, the encapsulation ...
EPFL2022

In depth analysis of heterogeneous catalysts for the chemoenzymatic dynamic kinetic resolution of beta-amino esters

Kumar Varoon Agrawal, Cédric Karel J Van Goethem

The chemoenzymatic dynamic kinetic resolution of beta-amino esters is established after detailed evaluation of metal-based heterogeneous catalysts for racemization and enzyme catalysts for kinetic resolution. Several heterogeneous palladium catalysts prove ...
ROYAL SOC CHEMISTRY2022

Generation of Human iPSC-Derived Neurons on Nanowire Arrays Featuring Varying Lengths, Pitches, and Diameters

Anna Fontcuberta i Morral, Wonjong Kim

Nanowire (NW) arrays interfaced with biological cells have been demonstrated to be potent tools for advanced applications such as sensing, stimulation, or drug delivery. Many implementations, however, have so far only been studied with rather robust basic ...
WILEY2022
Afficher plus
Concepts associés (11)
Rate equation
In chemistry, the rate law or rate equation for a chemical reaction is a mathematical equation that links the rate of forward reaction with the concentrations or pressures of the reactants and constant parameters (normally rate coefficients and partial reaction orders). For many reactions, the initial rate is given by a power law such as where [\mathrm{A}] and [\mathrm{B}] express the concentration of the species \mathrm{A} and \mathrm{B}, usually in moles per liter (molarity, M).
Cinétique chimique
La cinétique chimique est l'étude de la vitesse des réactions chimiques. Sur le plan disciplinaire, elle fait partie de la chimie physique. Certaines réactions sont totales et très rapides, voire instantanées, comme les explosions. D'autres sont tellement lentes qu'elles durent plusieurs années (comme la formation de la rouille), voire plusieurs siècles (comme la formation du charbon ou du pétrole). Certaines sont même tellement lentes que les réactifs de départ sont considérés comme stables, par exemple la transformation du diamant en carbone graphite.
Équilibre dynamique
Un équilibre dynamique peut avoir différentes significations : l'équilibre dynamique d'une pièce en rotation est atteint lorsque aucune vibration ne se produit quelle que soit sa vitesse de rotation. équilibre chimique dans lequel une réaction réversible se produit, mais sans modifier globalement le ratio réactif/produit, ces composés étant détruits aussi rapidement qu'ils sont produits, ce qui signifie qu'il n'y a pas de changement net dans la composition du système chimique. C'est un cas particulier d'état stationnaire.
Afficher plus