Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la recherche de documents, la classification, l'analyse des sentiments, les matrices TF-IDF, les méthodes de voisinage les plus proches, la factorisation matricielle, la régularisation, LDA, les vecteurs de mots contextualisés et BERT.
Explore les niveaux d'abstraction des données, de construction de modèles, d'utilisation et de représentation, et l'utilité des systèmes d'information pour la prise de décision.
Présente les bases de la récupération d'informations, couvrant la représentation de documents, l'expansion des requêtes et TF-IDF pour le classement des documents.
Couvre l'extraction des relations et la construction de graphes dans l'induction de la taxonomie, en mettant l'accent sur la réduction du bruit pour des graphes précis.
Couvre les défis et les opportunités de l'exploration de données, des questions pratiques, des composants d'algorithmes et des applications telles que l'analyse du panier d'achat.
Explore l'analyse de l'humeur exprimée sur Twitter à l'aide de données longitudinales et d'outils d'analyse de texte, en soulignant l'importance de prendre en compte les données biaisées.