Publications associées (136)

Transportation-based functional ANOVA and PCA for covariance operators

Victor Panaretos, Yoav Zemel, Valentina Masarotto

We consider the problem of comparing several samples of stochastic processes with respect to their second-order structure, and describing the main modes of variation in this second order structure, if present. These tasks can be seen as an Analysis of Vari ...
Inst Mathematical Statistics-Ims2024

Near Collision Attack Against Grain V1

Daniel Patrick Collins, Subhadeep Banik, Willi Meier

A near collision attack against the Grain v1 stream cipher was proposed by Zhang et al. in Eurocrypt 18. The attack uses the fact that two internal states of the stream cipher with very low hamming distance between them, produce similar keystream sequences ...
2023

Partial Information Sharing Over Social Learning Networks

Ali H. Sayed, Virginia Bordignon

This work addresses the problem of sharing partial information within social learning strategies. In social learning, agents solve a distributed multiple hypothesis testing problem by performing two operations at each instant: first, agents incorporate inf ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2023

Diverse parameters of ambulatory knee moments differ with medial knee osteoarthritis severity and are combinable into a severity index

Julien Favre

Objective: To characterize ambulatory knee moments with respect to medial knee osteoarthritis (OA) severity comprehensively and to assess the possibility of developing a severity index combining knee moment parameters. Methods: Nine parameters (peak amplit ...
FRONTIERS MEDIA SA2023

OptTTA: Learnable Test-Time Augmentation for Source-Free Medical Image Segmentation Under Domain Shift

Jean-Philippe Thiran, Guillaume Marc Georges Vray, Devavrat Tomar

As distribution shifts are inescapable in realistic clinical scenarios due to inconsistencies in imaging protocols, scanner vendors, and across different centers, well-trained deep models incur a domain generalization problem in unseen environments. Despit ...
PMLR2022

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.