Concepts associés (23)
Espace d'échelle
La théorie de lEspace d'échelle () est un cadre pour la représentation du signal développé par les communautés de la vision artificielle, du , et du traitement du signal. C'est une théorie formelle pour manipuler les structures de l'image à différentes échelles, en représentant une image comme une famille d'images lissées à un paramètre, la représentation d'espace échelle, paramétrée par la taille d'un noyau lissant utilisé pour supprimer les structures dans les petites échelles. Soit un signal.
Filtre de Prewitt
Le filtre de Prewitt est utilisé en pour la détection de contours. Il tient son nom de Judith M. S. Prewitt. En termes simples, le filtre calcule le gradient d'intensité lumineuse de l'image à chaque point, donnant la direction et le taux de la plus grande décroissance. Le résultat nous indique les changements abrupts de luminosité de l'image et donc exhibe les contours probables de celle-ci. En pratique cette technique est plus fiable et facile à mettre en œuvre qu'un algorithme plus direct.
Détection de contours
En et en vision par ordinateur, on appelle détection de contours les procédés permettant de repérer les points d'une qui correspondent à un changement brutal de l'intensité lumineuse. Ces changements de propriétés de l' indiquent en général des éléments importants de structure dans l'objet représenté. Ces éléments incluent des discontinuités dans la profondeur, dans l'orientation d'une surface, dans les propriétés d'un matériau et dans l'éclairage d'une scène.
Filtre de Sobel
Le filtre de Sobel est un opérateur utilisé en pour la détection de contours. Il s'agit d'un des opérateurs les plus simples qui donne toutefois des résultats corrects. Pour faire simple, l'opérateur calcule le gradient de l'intensité de chaque pixel. Ceci indique la direction de la plus forte variation du clair au sombre, ainsi que le taux de changement dans cette direction. On connaît alors les points de changement soudain de luminosité, correspondant probablement à des bords, ainsi que l'orientation de ces bords.
Roberts cross
The Roberts cross operator is used in and computer vision for edge detection. It was one of the first edge detectors and was initially proposed by Lawrence Roberts in 1963. As a differential operator, the idea behind the Roberts cross operator is to approximate the gradient of an image through discrete differentiation which is achieved by computing the sum of the squares of the differences between diagonally adjacent pixels.
Filtre de Canny
Le filtre de Canny (ou détecteur de Canny) est utilisé en pour la détection des contours. L'algorithme a été conçu par John Canny en 1986 pour être optimal suivant trois critères clairement explicités : bonne détection : faible taux d'erreur dans la signalisation des contours, bonne localisation : minimisation des distances entre les contours détectés et les contours réels, clarté de la réponse : une seule réponse par contour et pas de faux positifs vignette|Image obtenue après application d'un flou gaussien 5x5.
Corner detection
Corner detection is an approach used within computer vision systems to extract certain kinds of features and infer the contents of an image. Corner detection is frequently used in motion detection, , video tracking, image mosaicing, panorama stitching, 3D reconstruction and object recognition. Corner detection overlaps with the topic of interest point detection. A corner can be defined as the intersection of two edges. A corner can also be defined as a point for which there are two dominant and different edge directions in a local neighbourhood of the point.
Blob detection
In computer vision, blob detection methods are aimed at detecting regions in a that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to each other. The most common method for blob detection is convolution.
Flux optique
vignette|400px|Le flux optique perçu par un observateur en rotation (dans ce cas, une mouche). Les flèches représentent la direction et la vitesse du mouvement. Le flux optique est le mouvement apparent des objets, surfaces et contours d'une scène visuelle, causé par le mouvement relatif entre un observateur (l'œil ou une caméra) et la scène. Le concept de flux optique a été étudié dans les années 1940 et des travaux ont été publiés dans American psychologist par James J. Gibson.
Ridge detection
In , ridge detection is the attempt, via software, to locate ridges in an , defined as curves whose points are local maxima of the function, akin to geographical ridges. For a function of N variables, its ridges are a set of curves whose points are local maxima in N − 1 dimensions. In this respect, the notion of ridge points extends the concept of a local maximum. Correspondingly, the notion of valleys for a function can be defined by replacing the condition of a local maximum with the condition of a local minimum.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.