Résumé
Le filtre de Sobel est un opérateur utilisé en pour la détection de contours. Il s'agit d'un des opérateurs les plus simples qui donne toutefois des résultats corrects. Pour faire simple, l'opérateur calcule le gradient de l'intensité de chaque pixel. Ceci indique la direction de la plus forte variation du clair au sombre, ainsi que le taux de changement dans cette direction. On connaît alors les points de changement soudain de luminosité, correspondant probablement à des bords, ainsi que l'orientation de ces bords. En termes mathématiques, le gradient d'une fonction de deux variables (ici l'intensité en fonction des coordonnées de l'image) est un vecteur de dimension 2 dont les coordonnées sont les dérivées selon les directions horizontale et verticale. En chaque point, le gradient pointe dans la direction du plus fort changement d'intensité, et sa longueur représente le taux de variation dans cette direction. Le gradient dans une zone d'intensité constante est donc nul. Au niveau d'un contour, le gradient traverse le contour, des intensités les plus sombres aux intensités les plus claires. L'opérateur utilise des matrices de convolution. La matrice de taille 3×3 subit une convolution avec l'image pour calculer des approximations des dérivées horizontale et verticale. Soit l'image source, et deux images qui en chaque point contiennent des approximations respectivement de la dérivée horizontale et verticale de chaque point. Ces images sont calculées comme suit: En chaque point, les approximations des gradients horizontaux et verticaux peuvent être combinées comme suit pour obtenir une approximation de la norme du gradient : On peut également calculer la direction du gradient comme suit : où, par exemple, vaut 0 pour un contour vertical plus foncé à gauche (voir atan2). Puisque l'intensité d'une image numérique est discrète, les dérivées de cette fonction ne peuvent pas être définies si ce n'est sous une hypothèse de continuité de la fonction intensité continue qui a été échantillonnée.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.