Single-photon sources are light sources that emit light as single particles or photons. These sources are distinct from coherent light sources (lasers) and thermal light sources such as incandescent light bulbs. The Heisenberg uncertainty principle dictates that a state with an exact number of photons of a single frequency cannot be created. However, Fock states (or number states) can be studied for a system where the electric field amplitude is distributed over a narrow bandwidth. In this context, a single-photon source gives rise to an effectively one-photon number state. Photons from an ideal single-photon source exhibit quantum mechanical characteristics. These characteristics include photon antibunching, so that the time between two successive photons is never less than some minimum value. This behaviour is normally demonstrated by using a beam splitter to direct about half of the incident photons toward one avalanche photodiode, and half toward a second. Pulses from one detector are used to provide a ‘counter start’ signal, to a fast electronic timer, and the other, delayed by a known number of nanoseconds, is used to provide a ‘counter stop’ signal. By repeatedly measuring the times between ‘start’ and ‘stop’ signals, one can form a histogram of time delay between two photons and the coincidence count- if bunching is not occurring, and photons are indeed well spaced, a clear notch around zero delay is visible. Although the concept of a single photon was proposed by Planck as early as 1900, a true single-photon source was not created in isolation until 1974. This was achieved by utilising a cascade transition within mercury atoms. Individual atoms emit two photons at different frequencies in the cascade transition and by spectrally filtering the light the observation of one photon can be used to 'herald' the other. The observation of these single photons was characterised by its anticorrelation on the two output ports of a beamsplitter in a similar manner to the famous Hanbury Brown and Twiss experiment of 1956.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
PHYS-635: Semiconductor photonics and quantum structures
This course gives an overview of the current trends in semiconductor nanophotonics, with an emphasis on quantum nanostructures and optical cavities. Different light-matter interaction regimes in cavit
MICRO-428: Metrology
The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
Séances de cours associées (23)
Quantum Mécanique : Spectra atomique
Explore les principes de la mécanique quantique, en se concentrant sur les spectres atomiques et les échecs de la mécanique classique pour les expliquer.
Graphène : Propriétés quantiques et nanoribbons
Explore la conductance quantique du graphène, ses propriétés électroniques spéciales, sa fabrication et ses effets de bord.
Capteurs d'images optiques : Métrologie de la limite de l'abbé et de la SPAD
Couvre les capteurs d'images optiques, la limite d'Abbe, les pixels de sous-résolution, les microlentilles, le vignettage et les détecteurs monophotons, y compris les aspects de métrologie SPAD.
Afficher plus
Publications associées (66)

Investigation of room-temperature single-photon emitters in GaN-based materials and GaN/AlN quantum dots

Johann Nicolaï Stachurski

Over the past decade, quantum photonics platforms aiming at harnessing the fundamental properties of single particles, such as quantum superposition and quantum entanglement, have flourished. In this context, single-photon emitters capable of operating at ...
EPFL2024

High-rate, high-resolution single photon X-ray imaging: Medipix4, a large 4-side buttable pixel readout chip with high granularity and spectroscopic capabilities

Jean-Michel Sallese, Adil Koukab, Viros Sriskaran

The Medipix4 chip is the latest member in the Medipix/Timepix family of hybrid pixel detector chips aimed at high -rate spectroscopic X-ray imaging using high -Z materials. It can be tiled on all 4 sides making it ideal for constructing large -area detecto ...
Iop Publishing Ltd2024

Down-conversion of a single photon as a probe of many-body localization

Cristiano Ciuti

Decay of a particle into more particles is a ubiquitous phenomenon to interacting quantum systems, taking place in colliders, nuclear reactors or solids. In a nonlinear medium, even a single photon would decay by down-converting (splitting) into lower-freq ...
NATURE PORTFOLIO2023
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.