Concept

Morphisme zéro

Résumé
Dans la théorie des catégories, une branche des mathématiques, un morphisme zéro est un type spécial de morphisme présentant certaines propriétés comme celles des morphismes vers et depuis un objet zéro . Définitions Supposons que C soit une catégorie, et f : X → Y un morphisme de la catégorie C. Le morphisme f est appelé morphisme constant (ou encore morphisme zéro à gauche) si pour tout objet W de la catégorie C et tout morphisme de cette catégorie , on a fg = fh. Parallèlement, f est appelé morphisme coconstant (ou encore morphisme zéro à droite) si pour tout objet Z de la catégorie C et tout morphisme de cette catégorie g, h : Y → Z, on a gf = hf. Un morphisme zéro est à la fois un morphisme constant et coconstant . Une catégorie avec morphismes zéro est celle où, pour tous les couples d'objets A et B de la catégorie C, il y a un morphisme fixe de cette catégorie 0AB : A → B, cette collection de morphismes zéro étant telle que pour t
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement