Function of a real variableIn mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.
Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Finite topological spaceIn mathematics, a finite topological space is a topological space for which the underlying point set is finite. That is, it is a topological space which has only finitely many elements. Finite topological spaces are often used to provide examples of interesting phenomena or counterexamples to plausible sounding conjectures. William Thurston has called the study of finite topologies in this sense "an oddball topic that can lend good insight to a variety of questions". Let be a finite set.
Fonction rationnelleEn mathématiques, une fonction rationnelle est une fonction définie par une fraction rationnelle, c'est-à-dire une dont le numérateur et le dénominateur sont des polynômes. En pratique, l'ensemble de définition est généralement (ensemble des réels) ou (ensemble des complexes). Si P et Q sont deux fonctions polynomiales et si Q n'est pas une fonction nulle, la fonction est définie pour tout x tel que Q(x) ≠ 0 par Une fonction qui n'est pas rationnelle est dite irrationnelle.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
MorphismeEn mathématiques, le morphisme est la relative similitude d'objets mathématiques considérés du point de vue de ce qu'ils partagent comme entités ou par leurs relations. En algèbre générale, un morphisme (ou homomorphisme) est une application entre deux structures algébriques de même espèce, c'est-à-dire des ensembles munis de lois de composition interne ou externe (par exemple deux groupes ou deux espaces vectoriels), qui respectent certaines propriétés en passant d'une structure à l'autre.
Connexité (mathématiques)La connexité est une notion de topologie qui formalise le concept d'« objet d'un seul tenant ». Un objet est dit connexe s'il est fait d'un seul « morceau ». Dans le cas contraire, chacun des morceaux est une composante connexe de l'objet étudié. Soit un espace topologique E. Les quatre propositions suivantes sont équivalentes : E n'est pas la réunion de deux ouverts non vides disjoints ; E n'est pas la réunion de deux fermés non vides disjoints ; les seuls ouverts-fermés de E sont ∅ et E ; toute application continue de E dans un ensemble à deux éléments muni de la topologie discrète est constante.
HomotopieEn mathématiques, une homotopie est une déformation continue entre deux applications, notamment entre les chemins à extrémités fixées et en particulier les lacets. Cette notion topologique permet de définir des invariants algébriques utilisés pour classifier les applications continues entre espaces topologiques dans le cadre de la topologie algébrique. L’homotopie induit une relation d'équivalence sur les applications continues, compatible avec la composition, qui mène à la définition de l’équivalence d'homotopie entre espaces topologiques.
Polynômethumb|Courbe représentative d'une fonction cubique. En mathématiques, un polynôme est une expression formée uniquement de produits et de sommes de constantes et d'indéterminées, habituellement notées X, Y, Z... Ces objets sont largement utilisés en pratique, ne serait-ce que parce qu'ils donnent localement une valeur approchée de toute fonction dérivable (voir l'article Développement limité) et permettent de représenter des formes lisses (voir l'article Courbe de Bézier, décrivant un cas particulier de fonction polynomiale).
ZéroZéro est un chiffre et un nombre. Son nom a été emprunté en 1485 à l’italien zero, contraction de zefiro, issu du latin médiéval zephirum, qui représente une transcription de l’arabe ṣĭfr (صفر), le vide (qui en français a également donné chiffre). Le zéro est noté sous forme d’une figure fermée simple : 0. En tant que chiffre, il est utilisé pour et marquer une position vide dans l’écriture des nombres en notation positionnelle. En tant que nombre, zéro est un objet mathématique permettant d’exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l’ensemble vide.