Résumé
En mathématiques, une fonction rationnelle est une fonction définie par une fraction rationnelle, c'est-à-dire une dont le numérateur et le dénominateur sont des polynômes. En pratique, l'ensemble de définition est généralement (ensemble des réels) ou (ensemble des complexes). Si P et Q sont deux fonctions polynomiales et si Q n'est pas une fonction nulle, la fonction est définie pour tout x tel que Q(x) ≠ 0 par Une fonction qui n'est pas rationnelle est dite irrationnelle. On parle de fonction rationnelle propre quand le degré du polynôme P est inférieur à celui de Q. Toute fonction polynomiale non nulle Q est acceptable mais la possibilité que pour un a donné, Q(a) = 0 implique que contrairement aux fonctions polynomiales, les fonctions rationnelles n'ont pas un domaine de définition toujours égal à K. Les racines du polynôme Q sont appelées pôles de la fonction rationnelle. Exemple : soit cette fonction est définie pour tout nombre réel x mais elle ne l'est pas pour tous les nombres complexes. Le dénominateur s'annule quand x = i et quand x = -i, où i est l'unité imaginaire. Le degré d'une fonction rationnelle s'obtient par la différence entre le degré du polynôme au numérateur et celui du polynôme au dénominateur : Les fonctions rationnelles sont utilisées en analyse numérique pour faire l'interpolation et le lissage de fonctions. L'approximation est bien adaptée aux logiciels d'algèbre symbolique et de calculs numériques car tout comme les polynômes, elles peuvent être évaluées efficacement tout en étant plus expressives que ceux-ci. Une technique souvent utilisée est celle de l'approximant de Padé. L'approximant de Padé de la fonction exponentielle permet par exemple de montrer que si t est un nombre rationnel différent de 0, exp(t) est irrationnel. L'approximant de Padé est un outil aussi utilisé en analyse complexe, par exemple pour l'étude de série divergente. décomposition en éléments simples Toute fonction rationnelle se décompose sous la forme de la somme d'un polynôme et de fractions dont les dénominateurs sont des puissances entières de polynômes premiers et dont le degré du numérateur est inférieur à celui dudit polynôme.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.