Problème des momentsEn analyse mathématique, le problème des moments est un problème inverse consistant à reconstruire une mesure réelle sur un intervalle donné à partir de ses moments. Plus concrètement, étant donnés un intervalle réel I et une suite (m) de réels, on peut se demander s'il existe sur I une mesure de Borel (donc positive) μ telle que pour tout entier naturel n, et, le cas échéant, si une telle mesure est unique. Si cette mesure existe, elle représente alors la loi de probabilité d’une variable aléatoire réelle dont les moments sont les nombres m.
Stieltjes moment problemIn mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions for a sequence (m0, m1, m2, ...) to be of the form for some measure μ. If such a function μ exists, one asks whether it is unique. The essential difference between this and other well-known moment problems is that this is on a half-line [0, ∞), whereas in the Hausdorff moment problem one considers a bounded interval [0, 1], and in the Hamburger moment problem one considers the whole line (−∞, ∞).
Moment (probabilités)En théorie des probabilités et en statistique, les moments d’une variable aléatoire réelle sont des indicateurs de la dispersion de cette variable. Le premier moment ordinaire, appelé moment d'ordre 1 est l'espérance (i.e la moyenne) de cette variable. Le deuxième moment centré d'ordre 2 est la variance. Ainsi, l'écart type est la racine carrée du moment centré d’ordre 2. Le moment d'ordre 3 est l'asymétrie. Le moment d'ordre 4 est le kurtosis. Le concept de moment est proche du concept de moment en physique.
Variable aléatoirevignette|La valeur d’un dé après un lancer est une variable aléatoire comprise entre 1 et 6. En théorie des probabilités, une variable aléatoire est une variable dont la valeur est déterminée après la réalisation d’un phénomène, expérience ou événement, aléatoire. En voici des exemples : la valeur d’un dé entre 1 et 6 ; le côté de la pièce dans un pile ou face ; le nombre de voitures en attente dans la 2e file d’un télépéage autoroutier ; le jour de semaine de naissance de la prochaine personne que vous rencontrez ; le temps d’attente dans la queue du cinéma ; le poids de la part de tomme que le fromager vous coupe quand vous lui en demandez un quart ; etc.