Concept

Nombre déficient

vignette|Diagramme en bâtons de la somme des diviseurs propres de en fonction de , pour variant de 1 à 40. Les nombres déficients (gris) sont ceux pour lesquels le bâton reste sous la première diagonale. En mathématiques, un nombre déficient est un nombre entier naturel n qui est strictement supérieur à la somme de ses diviseurs stricts, autrement dit, tel que où est la somme des diviseurs entiers positifs de n y compris n. La valeur est appelée déficience de n. Les nombres dont la déficience est nulle sont les nombres parfaits, et les nombres dont la déficience est strictement négative les nombres abondants. Les nombres déficients ont été introduits vers 130 par Nicomaque de Gérase dans son Introduction à l'arithmétique. Leurs premières valeurs sont : 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, ... (voir ). Pour , la déficience d'un nombre déficient va de 1 (pour les nombres dits presque parfaits) jusqu'à pour les nombres premiers (qui sont donc les naturels de déficience maximale). Il existe une infinité de nombres déficients pairs et impairs. Par exemple, tous les nombres premiers et leurs puissances (autrement dit, les nombres primaires) sont déficients. Tout diviseur strict d'un parfait ou déficient est déficient.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.