Concept

Nombre étrange

Résumé
Un nombre étrange est, en mathématiques, un entier naturel n qui est abondant mais non semi-parfait : la somme de ses diviseurs propres (y compris 1 mais pas n) est plus grande que n mais aucune somme de certains de ses diviseurs n'est égale à n. Le plus petit nombre étrange est 70. Ses diviseurs propres sont 1, 2, 5, 7, 10, 14 et 35. Leur somme vaut 74 mais aucune somme de certains de ses diviseurs ne donne 70. Il existe une infinité de nombres étranges, car le produit d'un tel nombre avec un nombre premier assez grand est encore étrange. Les huit plus petits sont: 70, 836, 4 030, 5 830, 7 192, 7 912, 9 272, 10 430. La suite des nombres étranges a une densité asymptotique positive. En 2012, aucun nombre étrange impair n'a encore été découvert. S'il en existe, ils doivent être plus grands que 232 ≈ 4 × 109 et même 1,8 × 10 . Stanley Kravitz a démontré que si k est un entier strictement positif, si Q est un nombre premier et si R=\fr
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement