Explore les propriétés et les applications des nanostructures de carbone, y compris le graphène et les nanotubes de carbone, en mettant l'accent sur leurs caractéristiques uniques et leurs diverses utilisations.
Explore les propriétés du graphène, la structure des bandes, l'électronique et les phénomènes à l'échelle nanométrique tels que l'effet Quantum Hall et l'effet Casimir.
Explore la microscopie électronique in situ pour observer la dynamique chimique, en se concentrant sur les catalyseurs actifs et les structures dissipatives.
Explore les techniques de spectroscopie d'énergie comme XPS et UPS, la spectroscopie Auger, la sensibilité de surface et la structure de bande de graphène.
Couvre l'algorithme Fast Fourier Transform (FFT) et ses applications en physique computationnelle, y compris le traitement d'images, les techniques expérimentales, les filtres et l'analyse des images en microscopie.
Explore la résistance au contact dans les dispositifs semi-conducteurs, la résistance quantique, la conductance quantifiée, les défis d'injection de spin et les stratégies de réduction de la résistance au contact.
Explore le potentiel du graphène dans le développement d'interfaces neuronales efficaces avec le système nerveux, en abordant les défis actuels et en discutant de diverses technologies basées sur le graphène.
Explore l'ingénierie du magnétisme intrinsèque π-électron dans les nanostructures de carbone, en mettant l'accent sur l'induction du magnétisme dans le graphène et les nanographènes à travers le déséquilibre sublattice et la frustration topologique.
Explore la transition de l'état spintronique à l'état majorana dans les matériaux proximités, en mettant l'accent sur la proximité magnétique et la détection topologique de la supraconductivité.