MATH-502: Distribution and interpolation spacesThe goal of this course is to give an introduction to the theory of distributions and cover the fundamental results of Sobolev spaces including fractional spaces that appear in the interpolation theor
CS-450: Algorithms IIA first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
MATH-100(b): Advanced analysis IDans ce cours, nous étudierons les notions fondamentales de l'analyse réelle, ainsi que le calcul différentiel et intégral pour les fonctions réelles d'une variable réelle.
MATH-220: Topology I - point set topologyA topological space is a space endowed with a notion of nearness. A metric space is an example of a topological space, where a distance function measures the concept of nearness. Within this abstract
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MATH-302: Functional analysis IConcepts de base de l'analyse fonctionnelle linéaire: opérateurs bornés, opérateurs compacts, théorie spectrale pour les opérateurs symétriques et compacts, le théorème de Hahn-Banach, les théorèmes d
MATH-432: Probability theoryThe course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.