Cours associés (52)
MICRO-462: Learning and adaptive control for robots
To cope with constant and unexpected changes in their environment, robots need to adapt their paths rapidly and appropriately without endangering humans. this course presents method to react within mi
EE-311: Fundamentals of machine learning
Ce cours présente une vue générale des techniques d'apprentissage automatique, passant en revue les algorithmes, le formalisme théorique et les protocoles expérimentaux.
PHYS-754: Lecture series on scientific machine learning
This lecture presents ongoing work on how scientific questions can be tackled using machine learning. Machine learning enables extracting knowledge from data computationally and in an automatized way.
MICRO-573: Deep learning for optical imaging
This course will focus on the practical implementation of artificial neural networks (ANN) using the open-source TensorFlow machine learning library developed by Google for Python.
CS-456: Deep reinforcement learning
This course provides an overview and introduces modern methods for reinforcement learning (RL.) The course starts with the fundamentals of RL, such as Q-learning, and delves into commonly used approac
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
CS-234: Technologies for democratic society
This course will offer students a broad but hands-on introduction to technologies of human self-organization.
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
CS-411: Digital education
This course addresses the relationship between specific technological features and the learners' cognitive processes. It also covers the methods and results of empirical studies: do student actually l

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.