Catherine DehollainShe got the Master Degree in Electrical Engineering in 1982 from EPFL. Then, she worked in Geneva up to 1990 as a Senior Design Engineer in telecommunications at the European research center of Motorola. From 1990 up to 1995, she did her PhD thesis at the Chaire des Circuits et Systemes at EPFL in the domain of impedance broadband matching circuits. Since 1995, she is responsible at EPFL for the RFIC group. She has participated to different Swiss research projects as well as European projects dedicated to data communication of sensors nodes (e.g. MuMoR, Minami European projects) as well as remote powering of sensor nodes. Her main domains of interest are telecom applications (e.g. Impulse radio Ultra-Wide Band, super-regenerative receivers, RFIDs)as well as biomedical applications. She has been the coordinator of European projects (e.g. FP6 SUPREGE, FP7 Ultrasponder)and of Swiss projects (e.g. CAPED CTI project, NEURO-IC SNF project).
Christian EnzChristian C. Enz (M84, S'12) received the M.S. and Ph.D. degrees in Electrical Engineering from the EPFL in 1984 and 1989 respectively. From 1984 to 1989 he was research assistant at the EPFL, working in the field of micro-power analog IC design. In 1989 he was one of the founders of Smart Silicon Systems S.A. (S3), where he developed several low-noise and low-power ICs, mainly for high energy physics applications. From 1992 to 1997, he was an Assistant Professor at EPFL, working in the field of low-power analog CMOS and BiCMOS IC design and device modeling. From 1997 to 1999, he was Principal Senior Engineer at Conexant (formerly Rockwell Semiconductor Systems), Newport Beach, CA, where he was responsible for the modeling and characterization of MOS transistors for the design of RF CMOS circuits. In 1999, he joined the Swiss Center for Electronics and Microtechnology (CSEM) where he launched and lead the RF and Analog IC Design group. In 2000, he was promoted Vice President, heading the Microelectronics Department, which became the Integrated and Wireless Systems Division in 2009. He joined the EPFL as full professor in 2013, where he is currently the director of the Institute of Microengineering (IMT) and head of the Integrated Circuits Laboratory (ICLAB).He is lecturing and supervising undergraduate and graduate students in the field of Analog and RF IC Design at EPFL. His technical interests and expertise are in the field of very low-power analog and RF IC design, semiconductor device modeling, and inexact and error tolerant circuits and systems.He has published more than 200 scientific papers and has contributed to numerous conference presentations and advanced engineering courses. Together with E. Vittoz and F. Krummenacher he is one of the developer of the EKV MOS transistor model and the author of the book "Charge-Based MOS Transistor Modeling - The EKV Model for Low-Power and RF IC Design" (Wiley, 2006). He has been member of several technical program committees, including the International Solid-State Circuits Conference (ISSCC) and European Solid-State Circuits Conference (ESSCIRC). He has served as a vice-chair for the 2000 International Symposium on Low Power Electronics and Design (ISLPED), exhibit chair for the 2000 International Symposium on Circuits and Systems (ISCAS) and chair of the technical program committee for the 2006 European Solid-State Circuits Conference (ESSCIRC). Since 2012 he has been elected as member of the IEEE Solid-State Circuits Society (SSCS) Administrative Commmittee (AdCom). He is also Chair of the IEEE SSCS Chapter of Switzerland.
Alexandre SchmidAlexandre Schmid received the M.Sc. degree in microengineering and the Ph.D. degree in electrical engineering from the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in 1994 and 2000, respectively. Since 1994, he has been with the EPFL, working with the Integrated Systems Laboratory as a Research and Teaching Assistant, and with the Electronics Laboratories as a Postdoctoral Fellow. In 2002, he was a Senior Research Associate with the Microelectronic Systems Laboratory, where he has been conducting research in the fields of bioelectronic interfaces and implantable biomedical electronics, nonconventional signal processing and neuromorphic hardware, and reliability of nanoelectronic devices, and also teaches with the Microengineering and Electrical Engineering Departments of EPFL. Since 2011, he is a Maître d'Enseignement et de Recherche (MER) Faculty Member with EPFL. He is a coauthor of two books, Reliability of Nanoscale Circuits and Systems, Methodologies and Circuit Architectures, Springer, 2011, and Wireless Cortical Implantable Systems, Springer, 2013, and a coeditor of one book, as well as over 100 articles published in journals and conferences.
Dr. Schmid has served as the General Chair of the Fourth International Conference on Nano-Networks in 2009 and has been serving as an Associate Editor of the Institute of Electrical, Information, and Communication Engineers Electronics Express since 2009.
Pierre-André FarinePierre-André Farine received the Doctoral and Engineering Degrees in Microtechnology from University of Neuchâtel, Switzerland, respectively in 1984 and 1978, and the Engineering in Microtechnology from ETS Le Locle in 1974.
He was working 17 years for the Swiss watch industries (Swatch Group), including developments for high-tech products, such as pager watches, watches including integrated sensors such as pressure, compass, altimeter and temperature sensors for Tissot. He was also involved in prototypes developments for watches including GPS and cellular GSM phones.
Since 8 years, he is Professor in Electronics and Signal Processing at the Institute of Microtechnology IMT, University of Neuchâtel, Switzerland. Full professor at EPFL since January 1st, 2009, he works in the field of low-power integrated products for portable devices, including microelectronics for wireless telecommunications, UWB and GNSS systems. He is Head of the Electronics and Signal Processing Laboratory ESPLAB of the EPFL IMT-NE. His laboratory works also for video and audio compression algorithms and their implementation in low power integrated circuits.
Maher KayalMaher Kayal received M.S. and Ph.D degrees in electrical engineering from the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) in 1983 and 1989 respectively. He has been with the Electronics laboratories of the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) since 1990, where he is currently a professor and director of the Energy Management and Sustainability" section. He has published many scientific papers, coauthor of three text books dedicated to mixed-mode CMOS design and he holds eleven patents. His technical contributions have been in the area of analog and Mixed-signal circuits design including highly linear and tunable sensors microsystems, signal processing and green energy management. Prizes and Honors : Electronics Letters journal Premium Award 2013, Outstanding Paper Award? IEEE Mixdes 2013 Basil Papadias paper Award, IEEE Powertech 2013 Best Paper Awards, Mixdes 2013 Best Paper Awards, ICCAS 2012 Outstanding Paper Award- IEEE Mixdes 2012. Poland Section IEEE ED Chapter special award in 2011. Credit Suisse Award for Best Teaching- 2009. The William M. Portnoy Award at the Energy Conversion Congress and Exposition , California Sept 2009. Best Paper Award - IEEE-Mixdes 2009. High Quality Paper - IEEE Power Tech Conference June 2009. Best Paper Award - IEEE-Mixdes 2007. Best Paper Award - IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics - 2006. Best Application Specific Integrated Circuit at the International European Design and Test Conference ED&TC - 1997. Ascom Award for the Best Work in Telecommunication Fields 1990. Publications Books. Books: Methodology for the Digital Calibration of Analog Circuits and Systems, Marc Pastre & Maher Kayal. Springer Publisher- (ISBN 1-4020-4252-3)-2006. Structured Analog CMOS Design, Danica Stefanovic & Maher Kayal. Springer Publisher-(ISBN 978-1-4020-8572-7)-2008. Linear CMOS RF Amplifiers for Wireless Applications, Maher Kayal, Springer Publisher. (ISBN 978-90-481-9360-8)-2010. Coeditor of Microelectronics Education Kluwer Academic Publishers. (ISBN 1-4020-2072-4). -2004.
Kyojin ChooProfessor Kyojin Choo received his B.S. and M.S. degree in electrical engineering from Seoul National University, Seoul, Korea, in 2007 and 2009, respectively. In 2018, he received his Ph.D. degree at the University of Michigan, Ann Arbor, MI, USA.
From 2009 to 2013, he was with Image Sensor Development Team of Samsung Electronics, Yong-In, Korea, where he designed signal readout chains for mobile/DSLR image sensors. From 2018 to 2021, he was with University of Michigan, Ann Arbor, MI, USA, as a Post-Doctoral Research Fellow, and he recently joined Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland, as an Assistant Professor. He holds more than 20 US patents and his research interests include charge-domain circuits, sensor interfaces, energy converters, high-speed links/timing generators, and millimeter-scale integrated systems.
Benoît Marie Joseph DeveaudBenoît Deveaud est maintenant Directeur Adjoint à l'Enseignement et la Recherche, Ecole Polytechnique Palaiseau.
Benoît Deveaud est né en France en 1952. Il est admis en 1971 à l'Ecole Polytechnique de Paris et s'y spécialise en physique. En 1974, il entre au Centre National d'Etudes des Télécommunications. Il mène à la fois les études sur les centres profonds dans les semi-conducteurs III-V, et poursuit ses études de physique en préparant un diplôme d'études approfondies en physique des solides. En 1984, il soutient sa thèse de doctorat à l'Université de Grenoble.
Entre-temps, son équipe s'intéresse aux microstructures et lance une recherche sur les propriétés structurales et optiques des super réseaux à base d'arséniure de gallium. Ces études mettent en évidence par exemple le transport vertical dans les superréseaux ou la quantification des énergies de transition dans un puits quantique. En 1986 il rejoint l'équipe de Daniel Chemla aux Bell Laboratories (Holmdel USA) et participe à la mise au point de la première expérience de luminescence ayant une résolution temporelle meilleure qu'une picoseconde. Il étudie les processus de relaxation ultra-rapide dans les puits quantiques.
Rentré en France, au CNET, en 1988, il dirige un laboratoire d'études ultra-rapides, portant sur les propriétés optiques et électroniques des matériaux semi-conducteurs.
Nommé professeur en physique à l'EPFL en octobre 1993, son équipe de recherche étudie la physique des processus ultrarapides dans les micro- et nanostructures et les composants qui les utilisent.
Il a dirigé l'Institut de Micro et Optoélectronique depuis 1998 puis l'Institut de Photonique et électronique quantique de 2003 à 2007. Son équipe participe activement au Pôle national de Recherche "Quantum Photonics" dont il a été le Directeur Adjoint de 2001 à 2005 puis le Directeur de 2005 à 2013.
Il a été Doyen pour la recherche à l'EPFL de 2008 à 2014.
De 2014 à 2017, il a dirigé l'Institut de Physique.
Il a été editeur divisionnaire de Physical Review Letters de 2001 à 2007.
François GallaireNé le 26 février 1975, François Gallaire obtient, en 1998, le diplôme dingénieur de lEcole Polytechnique à Paris et, en 1999, un master en « Physique des liquides » à lUniversité Pierre et Marie Curie, toujours à Paris. Il rejoint ensuite le Laboratoire dhydrodynamique (LadHyX) à lEcole polytechnique où il soutient, en 2003, une thèse sur le thème des instabilités des jets tournants et sur le contrôle de léclatement tourbillonnaire sous la direction de Jean-Marrc Chomaz. En 2003, il est nommé chargé de recherche au CNRS au Laboratoire J.A. Dieudonné de lUniversité de Nice Sophia-Antipolis.En 2009, il rejoint l'EPFL pour y fonder le laboratoire des mécanique des fluides et instabilités (LFMI). Ses recherches se concentrent sur létude des propriétés fondamentales de stabilité des écoulements de fluides et sont guidées par les applications réelles, en particulier le contrôle des écoulements. Récemment, il a réalisé dimportantes contributions dans les domaines de la micro-fluidique (lanalyse de la manipulation par laser dune goutte dans un micro-canal) et la dynamique des bio-fluides (le descriptif mécanique de lanévrisme de laorte abdominale).